It is a repository for Mini-project #1 database and source codes of COMP-598: Topics in Computer Science: Applied Machine Learning presented by professor Joelle Pineau at McGill university. Please find dataset in the CVS file called "final_200kSample_plusTemp" ...
Explore the fundamentals of machine learning and build intelligent applications with this learning pathway. Master key skills using Python, NumPy, TensorFlow, and Keras. Create real-world projects like image identification apps, text generators, and spam detectors. Dive into pattern recognition, language...
本文介绍如何使用miniCRAN来创建包和依赖项的本地存储库,从而脱机安装 R 包。 miniCRAN 识别包和依赖项,并将其下载到一个文件夹中,你将该文件夹复制到其他计算机以脱机安装 R 包。 可以指定一个或多个包,miniCRAN 会以递归方式读取这些包的依赖关系树。 然后,它会从 CRAN 或类似存储库中仅下载...
使用Azure Machine Learning 進行推斷:透過 Azure Stack Edge Mini R,您可以執行 ML 模型,以便在將資料傳送到雲端之前快速取得可據以採取動作的結果。 完整資料集可以選擇性地進行傳輸,以繼續重新定型並改善您的 ML 模型。 如需如何在 Azure Stack Edge Mini R 裝置上使用 Azure Machine Learning 硬體加速模型的詳...
By use case CI/CD & Automation DevOps DevSecOps Resources Topics AI DevOps Security Software Development View all Explore Learning Pathways White papers, Ebooks, Webinars Customer Stories Partners Open Source GitHub Sponsors Fund open source developers The ReadME Project GitHub community...
GitHub is where people build software. More than 100 million people use GitHub to discover, fork, and contribute to over 420 million projects.
Python is one of the fastest-growing platforms for applied machine learning. In this mini-course, you will discover how you can get started, build accurate models and confidently complete predictive modeling machine learning projects using Python in 14 days. This is a big and important post. You...
利用Minitab 的模块化数据科学和机器学习平台,您可以按照自己的节奏培养和发展自己的分析技能。 使用我们的自动化端到端数据科学解决方案,完成从数据访问直至模型部署的全部过程,或选择解决特定问题所需要的工具。 只有Minitab 的数据科学机器学习平台提供帮您解决问题所...
By performing training of the new variant of machine learning algorithm with the training data set, a cost metric of the new variant of machine learning algorithm is measured by measuring usage the used computing resources for the training. Based on the cost metric of the new variant of ...
In this work, we propose neural persistence, a complexity measure for neural network architectures based on topological data analysis on weighted stratified graphs. To demonstrate the usefulness of our approach, we show that neural persistence reflects best practices developed in the deep learning ...