1. Micro-F1基本概念 Micro-F1是F1分数的一种变体,特别适用于多标签分类问题。它是通过计算所有实例的总体指标(True Positives、False Positives、False Negatives)后,再计算得到的单个F1分数。 1.1 基本组成部分 Micro-F1的计算基于以下基本概念: True Positive (TP):正确预测为正类的数量 False Positive (FP):错...
Macro-F1计算方式: 一、F1-score 在多分类问题中,F1 值是一个重要的性能评估指标,用于衡量模型的精度和召回率。它可以通过不同的方式进行计算,这里主要介绍宏 F1(Macro-F1)和微 F1(Micro-F1)。 分类模型 精确率 召回率 加权平均 1、精确率、召回率和准确率 ...
3.1 macro-F1 3.2 weighted-F1 3.3 micro-F1 4. 趁热打铁,接着说说AUC、ROC 参考 网上也有许多文章关于单个指标的解析,讲的也很好,但有点碎片化。一直想把平常用来评价模型的一些指标,从来源到去路的梳理一遍。于是就花了些时间,把TP、FP、FN、TN以及对应引出的micro-f1, weight-f1,macro-f1的优劣与对应场景...
Micro-F1计算方式如下:首先,计算所有类别的总Precision和总Recall。公式表示为:总TP / (总TP + 总FP) 和 总TP / (总TP + 总FN)。然后,通过F1计算公式得出Micro-F1值。Micro-F1考虑了不同类别的数量,尤其适用于数据分布不均的情况。相比之下,Macro-F1计算方式则更为直接。对每类别的Precisi...
在BERT-Base-Chinese评价标准中,Micro-F1的计算过程如下: 1. 计算所有类别总的Precision和Recall。 2. 将 Precision 和 Recall 代入到 F1 公式中,计算出 F1 值。 3. 将所有类别的 F1 值求平均,得到 Micro-F1 值。 Micro-F1 是多标签分类任务中常用的评价指标,它能够反映出模型在所有类别上的综合表现。©...
根据F1分数的计算公式,F1-micro值为0.6153。微平均结果可以用sklearn库验证,通过设置average参数为'micro',以确保计算结果的一致性。宏平均(Macro-averaging)宏平均方法在处理多类分类任务时,为每个类别单独计算F1分数,然后取平均值。这种方法强调对每个类别性能的公平评估,不考虑类别间的不平衡。宏...
micro-F1 = 2*P*R/(P+R) = 2/3 4. PRF值-宏平均(Macro Average) “Macro”是分别计算每个类别的PRF,然后分别求平均得到PRF。即对多个混淆矩阵求PRF,然后求PRF的算术平均。公式如下: 同样借助上面例子,假设是三个类别的分类模型:(若除法过程中,分子分母同时为0,则结果也为0) ...
F1的核心思想在于,在尽可能的提高Precision和Recall的同时,也希望两者之间的差异尽可能小。F1-score适用于二分类问题,对于多分类问题,将二分类的F1-score推广,有Micro-F1和Macro-F1两种度量。 【Micro-F1】统计各个类别的TP、FP、FN、TN,加和构成新的TP、FP、FN、TN,然后计算Micro-Precision和Micro-Recall,得到Mic...
macro-F1和micro-F1的使用场景分别是:macro-F1:在计算公式中考虑到了每个类别的数量,所以适用于数据分布不平衡的情况;但同时因为考虑到数据的数量,所以在数据极度不平衡的情况下,数量较多数量的类会较大的影响到F1的值。micro-F1:没有考虑到数据的数量,所以会平等地看待每一类(因为每一类的...
F1的核心思想在于,在尽可能的提高Precision和Recall的同时,也希望两者之间的差异尽可能小。F1-score适用于二分类问题,对于多分类问题,将二分类的F1-score推广,有Micro-F1和Macro-F1两种度量。 【Micro-F1】统计各个类别的TP、FP、FN、TN,加和构成新的TP、FP、FN、TN,然后计算Micro-Precision和Micro-Recall,得到Mic...