为了提高MFTCoder的效率,我们采用了包括LoRA(Hu等,2021年)和QLoRA(Dettmers等,2023年)在内的参数高效的微调技术。实验结果表明,使用MFT方法训练的多任务模型在性能上优于单独为每个任务进行微调或合并多个任务的数据进行微调而得到的模型。我们进一步适配并验证了MFTCoder对各种当前流行的预训练LLMs的有效性,例如Qwen、...
为了提高MFTCoder的效率,我们采用了包括LoRA(Hu等,2021年)和QLoRA(Dettmers等,2023年)在内的参数高效的微调技术。实验结果表明,使用MFT方法训练的多任务模型在性能上优于单独为每个任务进行微调或合并多个任务的数据进行微调而得到的模型。我们进一步适配并验证了MFTCoder对各种当前流行的预训练LLMs的有效性,例如Qwen、...
为了提高MFTCoder的效率,我们采用了包括LoRA(Hu等,2021年)和QLoRA(Dettmers等,2023年)在内的参数高效的微调技术。实验结果表明,使用MFT方法训练的多任务模型在性能上优于单独为每个任务进行微调或合并多个任务的数据进行微调而得到的模型。我们进一步适配并验证了MFTCoder对各种当前流行的预训练LLMs的有效性,例如Qwen、...
通过深入分析MFTCoder论文的多任务微调技术,我们可以得出以下结论:多任务微调技术是一种有效的机器学习方法,它可以提高代码大模型的泛化能力。通过联合训练多个与代码相关的下游任务,MFT方法在多个任务上取得了更好的性能。此外,MFT方法还解决了先前多任务微调方法中常见的数据不平衡问题。这些发现对于推动多任务微调技术在...