得到的输出是一个二维数组,其中第一维表示MFCC特征维度数(n_mfcc),第二维表示信号的帧数(a)。
当n_mfcc取13时,表示只提取13维的MFCC特征,这是一种通用的MFCC取法。通常,n_mfcc的大小可以根据特...
mfcc python代码 python import librosa import numpy as np # 加载音频文件 y, sr = librosa.load('audio.wav')# 计算梅尔频谱倒谱系数(MFCC)mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)# 打印MFCCs print(mfccs)中文解释:1. 首先,我们导入必要的库:librosa 和 numpy。2. 然后,我们加载...
Specify optional pairs of arguments asName1=Value1,...,NameN=ValueN, whereNameis the argument name andValueis the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Sound classification is a multifaceted task that necessitates the gathering and processing of vast quantities of data, as well as the construction of machine learning models that can accurately distinguish between various sounds. In our project, we implemented a novel methodology for ...
MFCC的全部组成如下:N维MFCC系数(N/3 MFCC系数+N/3 一阶差分系数+N/3二阶差分系数)+帧能量。以语音识别中常用的39维MFCC为例,即为:13个静态系数+13个一阶差分系数(Delta系数)+13个二阶差分系数(Delta-Delta系数)。其中,差分系数用来描述动态特征,即声学特征在相邻帧间的变化情况。
mfcc_data=librosa.feature.mfcc(y=y, sr=sr,n_mfcc=13,n_fft=N_FFT,hop_length=int(N_FFT/4)) # 画出特征图,将MFCC可视化。转置矩阵,使得时域是水平的 plt.matshow(mfcc_data) plt.title('MFCC') 上面代码的作用是加载声音,取声音的前两秒进行情感分析。getNearestLen()函数根据声音的采样率确定一个...
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, fmax=8000) mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40) 你可以使用spafe提取mfcc,一行解决 from spafe.features.mfcc import mfcc sig = librosa.load('../test.wav',sr=16000)[0] gfccs = mfcc(sig, ...) 巴...
A simple MFCC extractor using C++ STL and C++11. Contribute to dspavankumar/compute-mfcc development by creating an account on GitHub.
LPC, vowels, formants. A repo to save my research on this topic - lip-sync-lpc/mfcc.c at master · georgiee/lip-sync-lpc