Meta-Transformer 探索了 Transformer 架构处理12种模态的潜力,包括图像 (images)、自然语言 (natural language)、点云 (point cloud)、音频谱图 (audio spectrogram)、视频 (video)、红外 (infrared)、高光谱 (hyperspectral)、X射线 (X-Ray)、IMU、表格 (tabular)、图 (graph) 和时间序列 (time-series) 数据,...
Meta-Transformer是一个用于多模态学习的新框架,用来处理和关联来自多种模态的信息,如自然语言、图像、点云、音频、视频、时间序列和表格数据,虽然各种数据之间存在固有的差距,但是Meta-Transformer利用冻结编码器从共享标记空间的输入数据中提取高级语义特征,不需要配对的多模态训练数据。该框架由统一的数据标记器、模式共...
Meta-Transformer是一个用于多模态学习的新框架,用来处理和关联来自多种模态的信息,如自然语言、图像、点云、音频、视频、时间序列和表格数据,虽然各种数据之间存在固有的差距,但是Meta-Transformer利用冻结编码器从共享标记空间的输入数据中提取高级语义特征,不需要配对的多模态训练数据。该框架由统一的数据标记器、模式共...
这种广泛的数据模态覆盖,极大扩展了 Meta-Transformer 的应用范围,并且 Meta-transformer 框架对于扩展到更多的模态有着易扩展、低成本、高训练效率的优势。 Meta-Transformer 的方法介绍 Meta-Transformer 统一处理来自不同模态的数据,并通过共享编码器完成对十二种模态的编码。...
Meta的跨时代赌注:字节级Transformer彻底消灭不必要的计算 人工智能的近代历史上,很少有研究敢于挑战现有前沿AI模型的基础。而Meta正是通过推出字节级Transformer(BLTs),试图解决AI当前最大的问题之一,同时让AI模型的思维方式更加接近人类。今天,您将更清晰地了解AI,揭示它的局限性,并提供一个直观的解决方案,...
前言 近日,香港中文大学多媒体实验室(CUHK MMLab)联合上海人工智能实验室的OpenGVLAB研究团队提出一个统一多模态学习框架 Meta-Transformer,实现骨干网络的大一统,具有一个模态共享编码器,并且无需配对数据,即可理解 12 种模态信息, 并提供了多模态无边界融合的新范式。相比CLIP、BEiT-3、Imagebind,模态数目大幅增加,并...
为了解决上述挑战,近日,香港中文大学多媒体实验室联合上海人工智能实验室的研究团队提出一个统一多模态学习框架 ——Meta-Transformer,采用全新的设计思路,通过统一学习无配对数据,可以理解 12 种模态信息。 Meta-Transformer 实现骨干网络的大一统,具有一个模态共享编码器,并且无需配对数据,能够在 12 个不同的模态上完成...
Meta-Transformer是一个用于多模态学习的新框架,用来处理和关联来自多种模态的信息,如自然语言、图像、点云、音频、视频、时间序列和表格数据,虽然各种数据之间存在固有的差距,但是Meta-Transformer利用冻结编码器从共享标记空间的输入数据中提取高级语义特征,不需要配对的多模态训练数据。
Meta-Transformer 可以有效地处理和学习高达 12 种模态的数据,从常见的文本、图像到音频、视频,甚至在其他更复杂的数据类型上也有所突破,如点云和高光谱数据。该设计有助于拓宽未来的多模态工作的设计思路。 图2:Meta-Transformer 的框架图:对于不同模态的数据,研究人员基于不同模态的信息特性设计了相应的特征序列构...
为了解决上述挑战,近日,香港中文大学多媒体实验室联合上海人工智能实验室的研究团队提出一个统一多模态学习框架 ——Meta-Transformer,采用全新的设计思路,通过统一学习无配对数据,可以理解 12 种模态信息。 网站地址:https://kxgong.github.io/meta_transformer/ ...