此外,作者还使用真实边界框对一些查询图像进行采样,并使用二元交叉熵损失和平滑L1损失进行模型训练。 Learning the separate detection head for base classes:作者调整主干特征提取器的参数,并学习base类的RPN和R-CNN模块。 Fine-tuning with both base and novel classes:在前两个步骤中只采用base类数据,而在微调这...
在 Ross 过往参与的工作中,有很多热门研究,如 Fast R-CNN、Mask R-CNN、YOLO、Faster R-CNN、SAM 等。2017 年,Ross 参与的 Mask R-CNN 获得了 ICCV 马尔奖(最佳论文),现在这篇论文的引用量达 3 万多次;另一篇论文《Focal Loss for Dense Object Detection》获得当年 ICCV 最佳学生论文。2021 年,Gi...
But interestingly,we found that the blended undiscovered objects could be “pre-processed” via theRoI featuresproduced by the first stage inference in Faster /Mask R-CNNs.Each RoI feature refers to a single object or background, so Faster /Mask RCNN may disentangle the complex information that...
论文的检测器框架设计为Faster R-CNN的扩展,使用3D检测头来预测每个检测到的2D目标的长方体。方法称为Cube R-CNN,如图3所示。 Cube R-CNN 论文的模型基于Faster R-CNN[61],一个端到端的基于区域的目标检测框架。Faster RCNN由主干网络组成,通常是CNN,它将输入图像嵌入到更高维的特征空间中。区域建议网络(RPN...
使用Token Merging可以将训练速度提高一倍。它可以用于图像、视频和音频任务,并且仍然可以达到最先进的准确性。 参考资料: https://www.marktechpost.com/2022/11/10/meta-ai-researchers-propose-token-merging-tome-to-make-vision-transformers-run-faster/...
Ross 在 AI 界可谓是战果累累,他最初因开发 R-CNN(基于区域的卷积神经网络)目标检测方法而闻名,这项研究可以说是改变了目标检测领域的研究思路,之后的其他研究 Fast-RCNN、Faster-RCNN 都沿袭了 R-CNN 的思路。 现在他的谷歌学术引用超过 41 万次。
一位群友在Meta的Instagram团队担任AI工程师,他的职业转型之旅充满了挑战与收获。🌐初入Meta,他接手了一个新项目,脑海中充满了各种高级算法,如faster RCNN、ResNet、Mask RCNN等。然而,现实很快给了他一个“下马威”:他发现连图片数据都找不到!经过一番探索,他终于确定了图片数据库的位置,并开始了数据爬取的...
Ross 在 AI 界可谓是战果累累,他最初因开发 R-CNN(基于区域的卷积神经网络)目标检测方法而闻名,这项研究可以说是改变了目标检测领域的研究思路,之后的其他研究 Fast-RCNN、Faster-RCNN 都沿袭了 R-CNN 的思路。 现在他的谷歌学术引用超过 41 万次。
由于带有FPN结构的Faster RCNN很吃显存,如果GPU的显存不够(如果batch_size小于8的话)建议在create_model函数中使用默认的norm_layer, 即不传递norm_layer变量,默认去使用FrozenBatchNorm2d(即不会去更新参数的bn层),使用中发现效果也很好。 在使用预测脚本时,要将'train_weights'设置为你自己生成的权重路径。
Faster RCNN − 14.78 20.34 26.89 LSTD − 17.66 22.37 29.00 FRCN-PN − 16.78 21.51 26.01 MetaRCNN Uniform 19.03 24.51 31.23 MetaRCNN NDT 17.48 23.00 29.83 MetaRCNN NDE 17.96 23.88 30.06 MetaRCNN SEU 18.02 24.01 30.15 MetaRCNN OHTM 18.97 24.31 31.44 MetaRCNN GCP 19.22 25.00 32.65 Me...