指定某一列为index 返回index的唯一值df.index.unique() 复合索引 Demo1 Demo2 一、数据合并之join join:默认情况下他是把行索引相同的数据合并到一起。 二、数据合并之merge pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=Tru...
参数left_index和right_index,最开始不明白这两参数的作用,后来经过尝试发现他们的作用如下。 上面的例子我们是用on来指定连接的主键。不光可以通过on来指定,我们还可以用索引作为拼接的主键,只需要将left_index与right_index参数设置为true就可以。 def t4(): agedata = {"name": ["lucy", "lili", "xiaoming...
【left_index为True时,第一个df以index为键】 【right_index为True时,第二个df以index 为键】 通过上述几个案例可以看出: left_on,right_on,left_index,right_index直接可以相互组合 left_on+right_on left_on+right_index left_index+right_on eft_index+right_index 今天的merge函数讲解就到此为止了,关...
on、left_on和right_on参数传递的字符串可以是列名或索引级别名称,这就可以在不重置索引的情况下,对索引级别和列名进行组合,合并两个DataFrame实例对象 In [117]: left_index = pd.Index(["K0", "K0", "K1", "K2"], name="key1") In [118]: left = pd.DataFrame( ...: { ...: "A": ["A0...
python merge函数使用 函数语法: pd.merge(left, right, how="inner, on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True) 参数解释: left - 数据顿对象。 right - 另一个数据顿对象 on - 要连接的列(名称)。必须在左侧和右侧数据框对象中找到...
python中的merge函数与sql中的 join 用法非常类似,以下是merge( )函数中的参数: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True...
# 基于df1的alpha列和df2的index内连接df9 = pd.merge(df1,df2,how='inner',left_on='beta',right_index=True,suffixes=('_df1','_df2'))print(df9) 2 join方法 join方法是基于index连接dataframe,merge方法是基于column连接,连接方法有内连接,外连接,左连接和右连接,与merge一致。
pd.merge(customer, order, left_index = True, right_on = 'cust_id', suffixes = ('_customer', '_order'))在上面的代码将True值传递给left_index参数,表示希望使用左侧数据集上的索引作为连接键。合并过程类似于下图。当我们按索引和列合并时,DataFrame结果将由于合并(匹配的索引)会增加一个额外的列。
在上面的代码中,我们将左侧数据集(Customer)上想要合并的列传递给left_on参数,将右侧数据集(Order)的列名传递给right_on参数。 left_on和right_on参数是串联工作的,因此我们不能在left_on参数中传递列名,而将right_on参数保留为空。 我们也可以使用left_index和right_index来替...
on: 要加入的列或索引级别名称。 必须在左侧和右侧DataFrame对象中找到。 如果未传递且left_index和right_index为False,则DataFrame中的列的交集将被推断为连接键。 left_on:左侧DataFrame中的列或索引级别用作键。 可以是列名,索引级名称,也可以是长度等于DataFrame长度的数组。 right_on: 左侧DataFrame中的列或索引...