Pandas库中的pd.merge()函数提供了一种灵活的方式来合并两个或多个DataFrame,类似于SQL中的JOIN操作。本文将详细介绍pd.merge()函数的用法,并通过多个代码示例展示其在不同场景下的应用。 一、pd.merge()函数简介 pd.merge()函数用于根据一个或多个键将不同的数据集合并成一个DataFrame。它非常类似于
参数how有四个选项,分别是:inner、outer、left、right。 inner是merge函数的默认参数,意思是将dataframe_1和dataframe_2两表中主键一致的行保留下来,然后合并列。 outer是相对于inner来说的,outer不会仅仅保留主键一致的行,还会将不一致的部分填充Nan然后保留下来。 然后是left和right,首先为什么是left和right,left指代...
数据连接的类型 使用merge函数连接数据,和使用sql语言命令连接数据,基本一致,也是有三种连接的类型。一对一连接 这种连接方式,适用于同一批数据,分散在不同的数据集中的情况。比如说,我们的个人信息,可能就会分为基本信息部分,教育信息部分,工作信息部分等等。每一部分信息,都是通过身份证号码的关键字来唯一标识...
pd.merge_asof 是一个非常有用的 Pandas 函数,特别适用于时间序列数据的合并。它可以高效地基于一个关键列(通常是时间列)来合并两个数据框。这个函数的主要特性是它会找到右侧数据框中时间最接近左侧数据框中时间的行,并进行合并。 语法说明 pd.merge_asof(left, right, on=None, left_on=None, right_on=Non...
pandas对象中的数据可以通过一些内置的方法进行合并:pandas.merge,pandas.concat,实例方法join,combine_first,它们的使用对象和效果都是不同的,下面进行区分和比较。 数据的合并可以在列方向和行方向上进行,即下图所示的两种方式: pandas.merge和实例方法join实现的是图2列之间的连接,以DataFrame数据结构为例讲解,DataFram...
日常办公中,我们经常会遇到需要匹配表,匹配对应数据的场景,在EXCEL中,我们习惯使用VLOOKUP函数或者是X-LOOKUP函数,今天学习的是Python,pandas库中的匹配功能。 首先导入所需的pandas库。 1 importpandas as pd 用到的模拟数据共三张表,分别是销售表,区域表,负责人表。
Pandas数据集的合并与连接merge()方法_Python数据分析与可视化,在这种情况下,就可以用left_on和right_on参数来指定列名。如果输出结果中有两个重复的列名,因此pd.merge()函数会自动为
importpandasaspd importnumpyasnp 1. 2. 参数left、right left、how就是需要连接的两个数据帧,一般有两种写法: pd.merge(left,right),个人习惯 left.merge(right) 图解过程如下: 两个数据框df1(left)、df2(right)有相同的字段userid 默认是通过相同的字段(键)进行关联,取出键中相同的值(ac),而且每个键的记...
这里需要注意的是,Pandas 库的 merge() 支持各种内外连接,与其相似的还有 join() 函数(默认为左连接)。 1. inner merge() 的 inner 的类型称为内连接,它在拼接的过程中会取两张表的键(key)的交集进行拼接。 下面以图解的方式来一步一步拆解。
pandas 包的merge、join、concat方法可以完成数据的合并和拼接。 merge方法主要基于两个dataframe的共同列进行合并; join方法主要基于两个dataframe的索引进行合并; concat方法是对series或dataframe进行行拼接或列拼接。 1 merge方法 pandas的merge方法是基于共同列,将两个dataframe连接起来。merge方法的主要参数: ...