你还需要在容器的 Megatron-LM 文件夹中添加分词器的词汇文件 vocab.json 和合并表 merges.txt。这些文件可以在带有权重的模型仓库中找到,请参阅 GPT2 库。你还可以使用 transformers 训练自己的分词器。你可以查看 CodeParrot 项目 以获取实际示例。现在,如果你想从容器外部复制这些数据,你可以使用以下命令:sudo ...
在开始使用Megatron-LM训练语言模型之前,首先需要安装必要的软件和库。确保你已经安装了PyTorch和Megatron-LM。你可以按照Megatron-LM的官方文档来安装。一旦准备工作完成,接下来是训练语言模型的步骤: 数据准备:首先,你需要准备用于训练的语言数据。确保数据集的格式与Megatron-LM的要求相匹配。通常,你需要将文本数据转换...
在计算lm-cross-entropy时默认是使用fp32来计算的,在开启--fp16选项的前提下可以通过指定--fp16-lm-cross-entropy来使用fp16计算lm-loss-entropy,对应megatron/arguments.py中的定义如下: group.add_argument('--fp16-lm-cross-entropy', action='store_true', help='Move the cross entropy unreduced loss c...
在Megatron-LM中支持使用fp16方式训练模型。 --micro-batch-size 对于单机无法训练的模型配置: 通常将micro batch size配置为1。 对于单机可以训练的模型配置: 您可以尝试从1开始逐渐增加micro batch size的值,并查看每秒可以处理的Token数量是否继续增加,从而找到最优的micro batch size值。
最后以一个demo尝试Megatron-LM(张量并行)的使用。 第二章(预估下一章内容): 详细介绍Data Parallel、Pipeline Parallel、Tensor Parallel原理 使用分布式通信原语,来手动复现DataParallel(参考DDP)、Pipeline Parallel(参考DeepSpeed、PipeDream等)、Tensor Parallel(参考Megatron-LM) 本章完整源码见 https://github.com/...
最新的Megatron已经加上了 FSDP v2的支持了:https://github.com/NVIDIA/Megatron-LM/commit/e1993fa6...
1、先看一个简单的问题,如何用多GPU来计算两个张量的乘积?(并行线性层) 假设公式为Y = XW,这里X是输入,W是权重,Y是输出;这是最简单的一个线性层。我们侧重看权重W被怎么切,因为这个是一个矩阵,其负责对张量X的最后一个维度进行“变形”。显然,我们可以: ...
我们将通过对现有PyTorch transformer实现进行少量有针对性的修改来介绍一种高效的模型并行方法。最近,训练最大的神经语言模型已经成为提高NLP应用水平的最佳方法。然而,对于超过十亿个参数的模型,单个GPU没有足够的内存来匹配模型和训练参数,这就需要模型并行性来将参数分割到多个GPU上。我们将通过在512个gpu上使用8路模...
在多个计算设备上部署深度学习模型是训练大规模复杂模型的一种方式,随着对训练速度和训练频率的要求越来越...
6.2 使用 6.2.1 上下游rank 6.2.2 world size 0x07 Data-parallel 7.1 分组 7.2 如何使用 0x08 模型组 0x09 如何把模型分到GPU 0xFF 参考 0x00 摘要 NVIDIA Megatron 是一个基于 PyTorch 的分布式训练框架,用来训练超大Transformer语言模型,其通过综合应用了数据并行,Tensor并行和Pipeline并行来复现 GPT3,值得我...