通过为每种手势定义一套明确的弯曲状态组合规则,并不断优化这些规则以适应不同用户的手型和习惯,我们可以使手势识别系统更加智能、准确和易于使用。 总的来说,我的这一手势识别方法充分利用了MediaPipe在手掌关键点识别方面的优势,通过精细分析手指的弯曲状态,实现了对手势的准确识别和数字的对应判断。 手指位置: 【示...
例如,在虚拟现实和增强现实中,手势识别可用于交互和控制;在医疗领域,手势识别可用于康复训练和手术操作辅助等。 博主根据Mediapipe框架中的深度学习算法进行手势识别检测,并基于此开发了一款结果可视化的手势识别系统,可以通过图片、视频、摄像头3种方式进行手部跟踪与手势识别,并且展示相应识别结果。可以识别数字以及其他多...
据悉,谷歌在开源MediaPipe时就曾表示:该算法可识别基础手语,可实现手势操控,用于AR/VR。因此,将MediaPipe用于手语识别本身就是自然的场景,SignAll是在原本算法基础上进一步对手语识别进行优化。 细节方面,MediaPipe框架有3个模型组成,包括:手掌识别模型BlazePalm(用于识别手的整体框架和方向)、Landmark模型(识别立体手部节点...
手势识别的基本原理是通过采集手部动作的图像或者视频,然后利用图像处理和机器学习的方法,提取出手势的特征信息,最终实现对手势的识别。在实际应用中,常常使用深度学习模型进行手势识别,例如卷积神经网络(CNN)。 三、使用Python-OpenCV进行手势识别 在Python编程语言中,OpenCV是一个强大的图像处理库,可以用于实现手势识别。...
博主根据Mediapipe框架中的深度学习算法进行手势识别检测,并基于此开发了一款结果可视化的手势识别系统,可以通过图片、视频、摄像头3种方式进行手部跟踪与手势识别,并且展示相应识别结果。可以识别数字以及其他多种常见的手部姿势,感兴趣的小伙伴可以自己试试。
目前,基于计算机视觉的手势识别方案越来越多样化,而且效果逐渐成熟。比如,谷歌在2019年开源的MediaPipe手势识别算法,就已经可以识别单手21个骨骼节点,甚至在2020年底更新后,可识别手指之间的遮挡。 而利用MediaPipe算法,机翻手语技术公司SignAll研发了一种基于手势识别的手语翻译SDK,它不仅可以翻译手语,还可以将手语作为一种...