近年的自动摘要算法大多是基于监督学习机制,没有考虑到人工标记语料的烦琐,并且大多数摘要模型在句子嵌入时不能结合上下文来更充分表达语义信息,忽略了文本的整体信息.针对上述问题提出了一种基于改进的BERT双向预训练语言模型与图排序算法结合的抽取式摘要模型.根据句子的位置以及上下文信息将句子映射为结构化的句子向量,再...
于冬奥问答领域,用户可以使用本系统来快速准确地获取冬奥内容相关的问答知识.进一步,对3种模型的效果进行了测评,测量了3种模型各自的回答可接受率.实验结果显示BERT模型的整体效果略优于知识图谱和TDIDF模型,BERT模型对3类问题的回答可接受率都超过了96%,知识图谱和TDIDF模型对于复合统计问答对的回答效果不如BERT模型...
(NLP) 、面向语音识别的中文/英文发音辞典、Tokenizers:注重性能与多功能性的最先进分词器、CLUENER 细粒度命名实体识别 Fine Grained Named Entity Recognition、 基于BERT的中文命名实体识别、中文谣言数据库、NLP数据集/基准任务大列表、nlp相关的一些论文及代码, 包括主题模型、词向量(Word Embedding)、命名实体识别...
(NLP) 、面向语音识别的中文/英文发音辞典、Tokenizers:注重性能与多功能性的最先进分词器、CLUENER 细粒度命名实体识别 Fine Grained Named Entity Recognition、 基于BERT的中文命名实体识别、中文谣言数据库、NLP数据集/基准任务大列表、nlp相关的一些论文及代码, 包括主题模型、词向量(Word Embedding)、命名实体识别...