有了FIND-MAX-CROSSING-SUBARRAY我们可以找到跨越中点的最大子数组,于是,我们也可以设计求解最大子数组问题的分治算法了,其伪代码如下: FIND-MAXMIMUM-SUBARRAY(A, low, high): if high = low return (low, high, A[low]) else mid = floor((low+high)/2) (left-low, left-high, left-sum) = FIND...
Now this problems turns into finding the maximum sum subarray of this difference array.Thanks to Shubham Mittal for suggesting this solution.#include<stdio.h> int maxDiff(int arr[], int n) { // Create a diff array of size n-1. The array will hold // the difference of adjacent elements...
http://www.geeksforgeeks.org/maximum-contiguous-circular-sum/ 1#include <iostream>2#include <vector>3#include <algorithm>4#include <queue>5#include <stack>6#include <string>7#include <fstream>8#include 9usingnamespacestd;1011boolallneg(intarr[],intn) {12for(inti =0; i < n; i++) ...
本文将介绍计算机算法中的经典问题——最大子数组问题(maximum subarray problem)。所谓的最大子数组问题,指的是:给定一个数组A,寻找A的和最大的非空连续...
有了FIND-MAX-CROSSING-SUBARRAY我们可以找到跨越中点的最大子数组,于是,我们也可以设计求解最大子数组问题的分治算法了,其伪代码如下: FIND-MAXMIMUM-SUBARRAY(A, low, high): if high = low return (low, high, A[low]) else mid = floor((low+high)/2) (left-low, left-high, left-sum)...
intmaxSubArray(std::vector<int>&nums){intlen=nums.size(); vector<int> sum(1000);intsum_1 = nums[0]; sum[0] = nums[0];for(inti=1;i<len;i++){ sum[i]=max(nums[i] +sum[i-1],nums[i]); sum_1=max(sum_1,sum[i]); ...
«Data Structure Array: Given an array of of size n and a number k, find all elements that appear more than n/k times »Data Structure Array: Find if there is a subarray with 0 sum posted @2014-04-10 05:41ying_vincent阅读(166) 评论(0)编辑 ...
过程FIND-MAX-CROSSING-SUBARRAY接收数组A和下标low、mid和high作为输入,返回一个下标元组划定跨越中点的最大子数组的边界,并返回最大子数组中值的和。其伪代码如下: FIND-MAX-CROSSING-SUBARRAY(A, low, mid, high): left-sum = -inf sum = 0 for i = mid downto low sum = sum + A[i] if sum >...
过程FIND-MAX-CROSSING-SUBARRAY接收数组A和下标low、mid和high作为输入,返回一个下标元组划定跨越中点的最大子数组的边界,并返回最大子数组中值的和。其伪代码如下: FIND-MAX-CROSSING-SUBARRAY(A, low, mid, high): left-sum = -inf sum = 0 for i = mid downto low sum = sum + A[i] if sum >...
Two Kadane Algorithms for the Maximum Sum Subarray Problem. Algorithms. 2023; 16(11):519. https://doi.org/10.3390/a16110519 Chicago/Turabian Style Kadane, Joseph B. 2023. "Two Kadane Algorithms for the Maximum Sum Subarray Problem" Algorithms 16, no. 11: 519. https://doi.org/10.3390/a...