('using divide and conquer...') print("Maximum contiguous sum is",find_maximum_subarray(A, 0, len(A) - 1), '\n') print('using Kanade Algorithm...') print("Maximum contiguous sum is", maxSubArraySum(A, len(A)), '\n') print('using dynamic programming...') MS = DP_maximum_...
the contiguous subarray[4,-1,2,1]has the largest sum =6. click to show more practice. More practice: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle. 题目标签:Array 这道题目给了我们一个array, 让我们找...
publicintmaxSubArray(int[]nums){intn=nums.length;int[]dp=newint[n];intmax=Integer.MIN_VALUE;for(intlen=1;len<=n;len++){for(inti=0;i<=n-len;i++){//直接覆盖掉前边对应的情况就行dp[i]=dp[i]+nums[i+len-1];//更新 maxif(dp[i]>max){max=dp[i];}}}returnmax;} 时间复杂度:...
left_sum + right_sum # using divide and conquer to solve maximum subarray problem # time complexity: n*logn def find_maximum_subarray(A, low, high): if (high == low): return low, high, A[low] else: mid = math.floor((low + high) / 2) left_low, left_high, left_sum = find...
Explanation: [4,-1,2,1] has the largest sum = 6. Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle. 题目大意 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),...
Input:[-2,1,-3,4,-1,2,1,-5,4],Output:6Explanation:[4,-1,2,1]has the largest sum=6. Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle. ...
the contiguous subarray [4,−1,2,1] has the largest sum = 6. More practice: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle. Hide Tags Divide and Conquer Array Dynamic Programming ...
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle. ...
If you have figured out the O( n ) solution, try coding another solution using the divide and conquer approach, which is more subtle. Solution Approach 1: o(n) currSum = max(nums[i], currSum+nums[i]) # The maximum value before the nums[i] ...
the contiguous subarray[4,-1,2,1]has the largest sum =6. click to show more practice. More practice: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle. ...