the contiguous subarray[4,−1,2,1]has the largest sum =6. 代码: classSolution {public:intmaxSubArray(vector<int>&nums) {intlargest_sum =INT_MIN;inttmp_sum =0;for( size_t i =0; i<nums.size(); ++i ){ tmp_sum+=nums[i]; largest_sum=std::max(largest_sum, tmp_sum); tmp_s...
subarray crosses the midpoint*/returnMath.Max(Math.Max(maxSubArraySum(arr, l, m), maxSubArraySum(arr, m+1, h)), maxCrossingSum(arr, l, m, h)); }/*Driver program to test maxSubArraySum*/publicstaticvoidMain() {int[] arr = { -2,3,4, -5,7};intn =arr.Length;intmax_sum =...
sum+=input[i]; if(sum>maxSum){ maxSum=sum; first=first_; last=input[i]; } if(sum<0){//负增益 需更新sum及临时的first_和last_ sum=0; first_=input[i+1]; last_=input[i+1]; } last_=input[i];//更新last_!!! } cout<<maxSum<<' '<<first<<' '<<last; return0; } 1....
public: int maxSubArray(vector<int>& nums) { int length=nums.size(); int max=INT_MIN ; int sum=0; for(int i=0;i<length;i++) { sum=0; for(int j=i;j<length;j++) { sum+=nums[j]; if(sum>max) max=sum; } } return max; } }; 2.大神都说是动态规划的题,所以百度下 动...
Meanwhile, in the array [-1,-1,-2,100,230,-5,-7] the answer would be the subarray [100,230] which produces a sum of 330 which is the maximum possible, as for example including [-2,100,230,-5] would be less than 330 etc. ejini战神 (1 dan) 2 years ago Kata hint != kat...
Maximum subarray sumGiven an \\\(n imes n\\\) array A of integers, with at least one positive value, the maximum subarray sum problem consists in finding the maximum sum among the sums of all rectangular subarrays of A. The maximum subarray problem appears in several scientific applications...
There can be multiple different sub-arrays that achieve the same maximum sum to the problem. /// Created by krislyy on 2018/11/5./// For example, for the// sequence of values −2, 1, −3, 4, −1, 2, 1, −5, 4; the contiguous subarray// with the largest sum is 4,...
def maxSubArrayA2(arr): max_ending_here = max_ending_sum = arr[0] for i in range(1, len(arr)): max_ending_here = max(max_ending_here+arr[i], arr[i]) max_ending_sum = max(max_ending_sum, max_ending_here) return max_ending_su S4:DP或分治算法,O(n) 前述Kadane算法...
How to Find Maximum Sum Subarray Given an array of integers, the task is to find the maximum subarray sum possible of all the non-empty arrays. Input: [−2, 1, −3, 4, −1, 2, 1, −5, 4] Output: 6 Explanation: Subarray [4, −1, 2, 1] is the max sum contiguous ...
53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which has the largest sum. For example, given the array[-2,1,-3,4,-1,2,1,-5,4], the contiguous subarray[4,-1,2,1]has the largest sum =6. ...