解法1: 1#defineMAX(a,b) (a > b ? a : b)23classSolution {4public:5intmaxSubArray(vector<int>&nums) {6intlen =nums.size();7intsum =0, ans = nums[0];8for(inti =0; i < len; i++){9sum +=nums[i];10ans =MAX(sum, ans);11sum = MAX(sum,0);12}13returnans;14}15};...
subarray crosses the midpoint*/returnMath.Max(Math.Max(maxSubArraySum(arr, l, m), maxSubArraySum(arr, m+1, h)), maxCrossingSum(arr, l, m, h)); }/*Driver program to test maxSubArraySum*/publicstaticvoidMain() {int[] arr = { -2,3,4, -5,7};intn =arr.Length;intmax_sum =...
sum+=input[i]; if(sum>maxSum){ maxSum=sum; first=first_; last=input[i]; } if(sum<0){//负增益 需更新sum及临时的first_和last_ sum=0; first_=input[i+1]; last_=input[i+1]; } last_=input[i];//更新last_!!! } cout<<maxSum<<' '<<first<<' '<<last; return0; } 1....
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] ...
c 第一版 暴力解法 空间O(n^3) 时间O(1) int maxSubArray(int* nums, int numsSize){ int i = 0; int j, k; int sum1 = 0; int sum = nums[0]; for(i = 0; i <numsSize; i++) { for(j = i; j < numsSize; j++) { for(k = i; k <= j; k++) { sum1 += nums[k...
918. Maximum Sum Circular Subarray # 题目 # Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array. (Fo
classSolution{public:intmaxSubArray(vector<int>&nums){intsum=0;// 记录连续子序列的和intans=nums[0];// 假设最大值为 nums[0]for(inti=0;i<(int)nums.size();++i){sum=max(sum+nums[i],nums[i]);// 计算 sumans=max(sum,ans);// 求最大值}returnans;}}; ...
Maximum Subarray 第一种方法,如果sum+val < val那么sum应该重新计算,sum = value 这道题目给了我们一个array, 让我们找到一个连续的子数组,它的sum是最大的。题目说明有O(n) 方法和 Divide and conquer 方法。 我们先来看一下O(n) 方法: 遍历array,对于每一个数字,我们判断,(之前的sum + 这个数字) ...
FIND-MAXMIMUM-SUBARRAY(A, low, high): if high = low return (low, high, A[low]) else mid = floor((low+high)/2) (left-low, left-high, left-sum) = FIND-MAXMIMUM-SUBARRAY(A, low, mid) (right-low, right-high, right-sum) = FIND-MAXMIMUM-SUBARRAY(A, mid+1, high) (cross...
Maximum subarray sumGiven an \\\(n imes n\\\) array A of integers, with at least one positive value, the maximum subarray sum problem consists in finding the maximum sum among the sums of all rectangular subarrays of A. The maximum subarray problem appears in several scientific applications...