Find the contiguous subarray within an array (containing at least one number) which has the largest sum. For example, given the array [-2,1,-3,4,-1,2,1,-5,4], the contiguous subarray [4,-1,2,1] has th...LeetCode 53. Maximum Subarray C语言 题目描述: Given an integer array ...
Maximum Subarray 最大子序和(C语言) 题目描述: 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 示例: 输入: [-2,1,-3,4,-1,2,1,-5,4], 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。 来源:力扣(LeetCode) 链接:https:/...
給一個整數陣列, 找出陣列內最大的總和,必須是鄰近的數加總。 解法1: 1#defineMAX(a,b) (a > b ? a : b)23classSolution {4public:5intmaxSubArray(vector<int>&nums) {6intlen =nums.size();7intsum =0, ans = nums[0];8for(inti =0; i < len; i++){9sum +=nums[i];10ans =MAX...
3,代码【C】 1,题目描述 Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. Example: Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum ...
c) Maximum subarray sum such that the subarray crosses the midpoint*/returnMath.Max(Math.Max(maxSubArraySum(arr, l, m), maxSubArraySum(arr, m+1, h)), maxCrossingSum(arr, l, m, h)); }/*Driver program to test maxSubArraySum*/publicstaticvoidMain() ...
right_high,right_sum auto vec_r = Find_Maximum_Subarray(A, mid + 1, high); //Conquer部分:如何解决子问题 //vec_c = cross_low,cross_high,cross_sum auto vec_c = Find_Max_Crossing_Subarray(A, low, mid, high); //子问题的答案如何让处理: 不影响每次带入Find_c 的下标 if ((vec_f...
LeetCode53.最大子序和( Maximum Subarray) C 题目: 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 示例: 小小的一题动态规划。 C代码: 谢谢。...LeetCode53. Maximum Subarray(最大子序列和) 题目Given an integer array nums, find the ...
1intmaxSubArray(int* nums,intnumsSize) {2returnmaxSubArrayEx(nums,0,numsSize-1);3}4intmaxSubArrayEx(int* nums,intleft,intright) {5if(left ==right)6returnnums[left];7intcenter = (left + right) /2;8intml =maxSubArrayEx(nums, left, center);9intmr = maxSubArrayEx(nums, center +...
53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which has the largest sum. For example, given the array[-2,1,-3,4,-1,2,1,-5,4], the contiguous subarray[4,-1,2,1]has the largest sum =6....
classSolution{public:intmaxSubArray(vector<int>&nums){intsum=0;// 记录连续子序列的和intans=nums[0];// 假设最大值为 nums[0]for(inti=0;i<(int)nums.size();++i){sum=max(sum+nums[i],nums[i]);// 计算 sumans=max(sum,ans);// 求最大值}returnans;}}; ...