代码: // C++ program for implementation of Ford Fulkerson algorithm #include <iostream> #include <limits.h> #include <string.h> #include <queue> using namespace std; // Number of vertices in given graph #define V 6 /* Returns true if there is a path from source 's' to sink 't' ...
Siddharth SaraphSpringer International PublishingM. Blanton and S. Saraph. Oblivious maximum bipartite matching size algorithm with appli- cations to secure fingerprint identification. In European Symposium on Research in Computer Security (ESORICS), pages 384-406, 2015....
And if we use directly Ford-Fulkerson Algorithm, will it be better? bipartite matching,ford fulkerson +4 gXa 8 years ago 3 Comments (3) Write comment? msci 8 years ago,#| +8 Maximum Bipartite Matching with Ford-Fulkerson takesO(VE)time. Using Dinic instead of Ford-Fulkerson (or Edmonds...
inty) {returnx*15+y;}78booldfs(intx)9{10for(inty=0;y<ny;++y)11if(g[x][y] && !vy[y])12{13vy[y]=1;14if(my[y]==-1||dfs(my[y]))15{16mx[x]=y;17my[y]=x;18return1;19}20}21return0;22}2324intb_matching()25{26memset(mx,-1,sizeof(mx));27memset(my,-1,sizeof...
‘dinic’: Dinic’s algorithm in[4]. 默认为‘dinic’。 返回:: res:MaximumFlowResult 由MaximumFlowResult表示的最大流,包括flow_value中的流值和flow中的流图。 抛出:: TypeError:: 如果输入图不是 CSR 格式。 ValueError:: 如果容量值不是整数,或者源或接收器超出范围。
The Hungarian algorithm finds a maximum independent edge set on a graph. The algorithm starts with any matching M and constructs a tree via a breadth-first search to find an augmenting path, namely a path P that starts and finishes at unmatched vertices
Maximum Cardinality Bipartite Matching Synopsis A somewhat efficient, purely functional (Haskell) algorithm to find maximum cardinality matchings in bipartite graphs (MCBM). This project contains a library, command line tool, tests and benchmark. ...
Given a simple bipartite graphG=(X,Y, E).M ⊆ E is called a 2-1 matching ofG if: 1) ∀ x εX, either two edges or none inM is incident tox and 2) ∀ y εY, at most one edge inM is incident toy. In this paper, we describe an efficient algorithm for finding a maxi...
We present novel symbolic ADD formulation and algorithm for maximum weighted matching in bipartite graphs. The symbolic algorithm implements the Hungarian algorithm in the context of ADD and OBDD formulation and manipulations. It begins by setting feasible labelings of nodes and then iterates through ...
An interesting algorithm for enumerating all the minimum-cost perfect matchings (where all vertices in the graph are matched) has been proposed in Fukuda and Matsui (1992) for the case of bipartite graphs; to the best of our knowledge, there is no equivalent algorithm for more general cases....