} maven和schema构建好之后需要进行install,然后就会在 ${project.basedir}/src/main/avro/ 目录下产生构建好的序列化代码,这个代码只需要使用java进行调用即可 4. 使用java进行序列化和反序列化的操作 publicclassTest_avro {publicstaticvoidmain(String[] args)throwsIOException {//TODO 序列化操作product pro =pr...
一、Flink项目依赖配置 <?xml version="1.0" encoding="UTF-8"?><projectxmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xmlns="http://maven.apache.org/POM/4.0.0"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0....
Learn all about the quality, security, and current maintenance status of org.apache.flink:flink-avro-confluent-registry using Cloudsmith Navigator
org.apache.flink flink-kubernetes-operator 2 2 ⚠️ org.apache.httpcomponents httpcomponents-parent 3 3 ✅ org.apache.jackrabbit.vault jackrabbit-filevault 14 6 ✅ / 8 ⚠️ org.apache.jackrabbit filevault-package-maven-plugin 9 9 ✅ jackrabbit-parent 16 5 ✅ / 11 ⚠️ jackr...
一般来说我们可以在maven-compiler-plugin中配置好executable的路径。如下所示: 代码语言:javascript 代码运行次数:0 AI代码解释 <build><plugins><!--target Java14--><plugin><artifactId>maven-compiler-plugin</artifactId><configuration><!--fork compilation and use the ...
thrift、avro、probobuf 这几个rpc框架的基本思想都差不多,先定义IDL文件,然后由各自的编译器(或maven插件)生成目标语言的源代码,但是,根据idl生成源代码这件事,如果每次都要手动敲命令,未免太无聊了,幸好这三种框架都提供了对应的maven插件来完成代码的自动生成,本文演示了这三种框架的maven插件用法。 一、maven-th...
.gitignore [FLINK-8994] [tests] Let general purpose DataStream job include Avro ….travis.yml [hotfix] [build] Force delete corrupt jar files from cache LICENSE [FLINK-9414] Remove unnecessary jline-reader and jline-terminal entri…
org.apache.flink » flink-avroApache Flink : Formats : Avro Last Release on Jul 25, 2024 4. Flink : Formats : Csv56 usages org.apache.flink » flink-csvApache Flink : Formats : Csv Last Release on Jul 25, 2024 5. Flink : Formats : Parquet48 usages ...
Artifacts using flink-table-planner version 1.13.3 1. Flink : Connectors : Kafka107 usages org.apache.flink » flink-connector-kafkaApache Flink : Connectors : Kafka Last Release on Nov 25, 2024 2. Flink : Formats : Avro85 usages ...
:ApacheAccumuloApacheAvroApacheCrunchApacheFlumeApacheHadoopApacheHBaseApacheHive/HiveonSpark/ HCatalog HueApacheImpalaApacheKafkaApacheKuduApacheOozieApacheParquetApache 技术选型的主要考虑因素有哪些 (基于内存)、Spark、Flink、Storm 数据查询:Presto(即席、Apache)、Druid(德鲁伊)、Impala(CDH)、Kylin(多维查询) 数据...