Matrix-Chain-Order(p)1.n=length(p)-1;2.let m[1..n ,1..n] and s[1..n-1,2..n] be new chain length3.FOR i=1TO n DO4.m[i, i]=0;5.FOR l=2TO n DO/* 计算从对角线开始,第l条对角线 */6.FOR i=1TO n-l+1DO/*n-l+1是第l条对角线上的元素*/7.j = i+l-1;/...
# 矩阵链乘 Matrix Chain Multiplication ## 题面翻译 ## 矩阵链乘 ### 题目描述 假设你必须评估一种表达形如 A*B*C*D*E,其中 A,B,C,D,E是矩阵。既然矩阵乘法是关联的,那么乘法的顺序是任意的。然而,链乘的元素数量必须由你选择的赋值顺序决定。 例如,A,B,C分别是 50 * 10 ,10 * 20...
【代码】 #include<bits/stdc++.h> #define ll long long using namespace std; const int N = 26; int n; char s[5]; pair <ll, ll> v[300],v1[300]; stack <char> sta; string cl(string s) { for (int i = 'A'; i <= 'Z'; i++) v[i] = v1[i]; if (s[0] != '(...
UVA - 442 Matrix Chain Multiplication 双端队列 题目大意:给出n个矩阵和表达式,问该表达式是否正确,如果计算正确,输出计算了多少次 解题思路:双端队列,遇到右括号时弹出后面的两个矩阵进行乘法,相乘时要注意顺序,是第二个出队列的乘上第一个出队列的。 #include<cstdio> #include<algorithm> #include<deque> #...
Matrix-chainmultiplication Matrix-chainmultiplication 问题描述 Input:{p0, p1 ,... , p n}. a chain {A1, A2,..., A n} of n matrices for i = 1, 2,...,n , matrix A i has dimension p i-1 * p i.值得注意的该问题的输⼊定义及其巧妙,不仅定义了矩阵的⾏以及列,还说明了它们是...
简介:UVA442 矩阵链乘 Matrix Chain Multiplication 题目描述 思路:首先要明白以下几点: 什么是矩阵乘法?(大概学过线代的都知道) 什么矩阵不可乘? A a*b B c*d 当 b = c时,两个矩阵可以相乘,同时结果为 C a*d 矩阵乘法的次数如何计算: 可以相乘的情况下 次数 = a*b*d (a*c*d也行) 这可以自己推...
Matrix chain multiplication is one of the classic optimization problems in computer science. For a given sequence \\(A_{1}\\), \\(A_{2},\\ldots ,A_{n}\\) of matrices, we need to compute the product of these matrices using the minimum number of scalar multiplications on a single ...
Matrix Chain Multiplication Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depe...
网络释义 1. 矩阵链相乘 www.nexoncn.com|基于2个网页 2. 矩阵相乘 ...ecutive Sum) 、最大子矩阵、最大矩形、矩阵相乘(Matrix-Chain Multiplication) 、拿石头、旅行推销员问题 (Traveling Sales… web.fg.tp.edu.tw|基于 1 个网页 3. 或矩阵连乘问题 ...
Journal of Applied Computer Science & MathematicsB. Bhowmik, "Simplified optimal parenthesization scheme for matrix chain multiplication problem using bottom-up practice in 2- tree structure," Journal of Applied Computer Science & Mathematics, vol. 11, no. 5, pp. 9-14, 2011....