ax=plt.subplots()ax.plot(dates,values,marker='o')ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))ax.xaxis.set_major_locator(mdates.DayLocator(interval=2))plt.gcf().autofmt_xdate()# 自动格式化日期标签plt.title('Time Series Data - how2matplotlib...
0.1, 0.8, 0.8]) ax.xaxis.set_major_locator(MultipleLocator(4)) ax.xaxis.set_minor_locator(MultipleLocator(2)) data = df[df["zbCN"] == key2].copy() data = data.sort_values(by="sj") ax.fill_between(data[...
1]# 提取数值数据fig,ax=plt.subplots()ax.plot(dates,values)# 调整刻度间隔ax.xaxis.set_major_l...
fontproperties = font_S) ax.set_xlabel('xaxis label', fontproperties=font_M) ax.plot(x,y...
How to Set X-Axis Values in Matplotlib 补充内容 import sys,os,math,time import matplotlib.pyplot as plt from numpy import * t = linspace(0, 20, 1000) sint = sin(t) cost = cos(t) col1 = 'steelblue' col2 = 'red' plt.figure(figsize=(10,6)) ...
y_values)), y_values)plt.gca().xaxis.set_ticklabels(x_values)其中,在这种情况下,x_values ...
start_date=datetime(2023,1,1)dates=[start_date+timedelta(days=i)foriinrange(10)]values=np.random.rand(10)plt.plot(dates,values,marker='o')plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=2))plt.gcf(...
matplotlib.dates as mdatesfig, ax = plt.subplots(figsize=(10, 6))candlestick_ohlc(ax, df[['Open', 'High', 'Low', 'Close']].values, width=0.6, colorup='red', colordown='green')ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))ax.set_xlabel('Date')ax.set_ylabel...
ax.plot(values) # 坐标轴范围 ax.axis((0, 100, 0, 100)) # 坐标轴区间: x 为 10 , y 为 20 ax.set_xticks([i * 10 for i in range(11)]) ax.set_yticks([i * 20 for i in range(6)]) # 坐标原点在左上角 ax.xaxis.set_ticks_position("top") ...
plt.xlabel('X-axis Label') plt.ylabel('Y-axis Label') # 添加图例 plt.legend(['Line A']) # 显示图表 plt.show() 通过这些基本组件,你可以增强图表的可读性。标题用于描述整个图表的内容,轴标签用于说明横轴和纵轴的含义,图例则用于标识不同的数据系列。这些元素共同构成了一个完整的Matplotlib图表。