案例链接:https://matplotlib.org/gallery/lines_bars_and_markers/scatter_masked.html#sphx-glr-gallery-lines-bars-and-markers-scatter-masked-py importmatplotlib.pyplotaspltimportnumpyasnp# 固定随机数种子,便于复现np.random.seed(19680801)# 生成随机数据N=100r0=0.6x=0.9*np.random.rand(N)y=0.9*np.r...
5. 使用scatter()函数添加标记点 除了plot()函数,scatter()函数也是添加标记点的常用方法,特别是当我们想要更灵活地控制每个点的属性时。 importmatplotlib.pyplotaspltimportnumpyasnp x=np.random.rand(50)y=np.random.rand(50)colors=np.random.rand(50)sizes=1000*np.random.rand(50)plt.figure(figsize=(8...
plt.scatter(x,y,s=300,c='r',marker='^',alpha=0.5,linewidths=7,edgecolors='g') 官网: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.html...
简单的散点图,用plot方法绘制速度会更快,scatter方法则慢一点,所以只有当颜色和大小超过了一定数量时,才推荐使用scatter方法。 scatter函数本身的用法比较简单,难点在于其图例的处理上。scatter函数的返回值为一个PathCollections对象,通过其legend_elements方法,可以获得绘制图例所需的信息,常见的几种图例绘制方法如下 1...
Matplotlib里有两种画散点图的方法,一种是用ax.plot画,一种是用ax.scatter画。 一. 用ax.plot画 ax.plot(x,y,marker="o",color="black") 二. 用ax.scatter画 ax.scatter(x,y,marker="o",s=sizes,c=colors) ax.plot和ax.scatter的区别: ...
Matplotlib是Python中最流行的数据可视化库之一,它提供了丰富的绘图功能,其中散点图(scatter plot)是一种常用的图表类型。在绘制散点图时,标记(marker)的样式对于数据的可视化效果至关重要。本文将全面介绍Matplotlib中散点图的标记样式,包括如何选择、自定义和应用不同的标记样式,以及如何通过标记样式来增强数据的可读性...
Line (line plot) - 线 Markers (scatter plot) - 标记 Major tick - 主刻度 Minor tick - 次刻度 Axes - 轴 Spines - 脊 这些基础概念十分有用,希望大家能记住其作用及对应的英文。如果遇到更复杂的需求,可以直接在官网文档中进行查询。 环境 Python 3.7.3 Matplotlib 3.1.3 常用链接 颜色Colors:...
plt.plot(x, np.sin(x -0), color='blue')# 通过颜色名称指定 plt.plot(x, np.sin(x -1), color='g')# 通过颜色简写名称指定(rgbcmyk) plt.plot(x, np.sin(x -2), color='0.75')# 介于0-1之间的灰阶值 plt.plot(x, np.sin(x -3), color='#FFDD44')# 16进制的RRGGBB值 ...
plt.plot(x, np.sin(x - 5), color='chartreuse'); # 能支持所有HTML颜色名称值 如果没有指定颜色,Matplotlib 会在一组默认颜色值中循环使用来绘制每一条线条。 类似的,通过linestyle关键字参数可以指定线条的风格: plt.plot(x, x + 0, linestyle='solid') ...
(2,2,1) # 两行两列,第一单元格sub1.plot(theta, y, color = 'green')sub1.set_xlim(1, 2)sub1.set_ylim(0.2, .5)sub1.set_ylabel('y', labelpad = 15)# 创建第二个轴,即左上角的橙色轴sub2 = fig.add_subplot(2,2,2) # 两行两列,第二个单元格sub2.plot(theta, y, color = ...