散点图(Scatter plot) 图表样式 场景一:展示两个变量之间的关系 可以用来分析一个自变量与一个因变量之间的关联程度。例如,研究学生的学习时间与考试成绩之间的关系。 代码 import matplotlib.pyplot as plt import numpy as np # 生成随机数据 np.random.seed(0) x = np.random.randn(100) y = 2 * x +...
matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs) 属性参数意义 坐标 x,y 输入点列的数组,长度都是size 点大小 s 点的直径数组,默认直径20...
2、散点图(Scatter Plot) 绘制散点图(Scatter Plot)是一种常用的方法来探索和展示数据集中各个数据点的分布。散点图通常用于比较两个变量之间的关系。使用plt.scatter()函数用于创建散点图,是数据可视化中常用的一个工具。常用参数如下, 使用代码: import matplotlib.pyplot as plt # 示例数据 x = [5, 7, 8...
importmatplotlib.pyplotasplt 这样我们就可以使用plt来引用 Pyplot 包的方法。 以下是一些常用的 pyplot 函数: plot():用于绘制线图和散点图 scatter():用于绘制散点图 bar():用于绘制垂直条形图和水平条形图 hist():用于绘制直方图 pie():用于绘制饼图 imshow():用于绘制图像 subplots():用于创建子图 除了这些...
绘制散点图(Scatter Plot)是一种常用的方法来探索和展示数据集中各个数据点的分布。散点图通常用于比较两个变量之间的关系。使用plt.scatter()函数用于创建散点图,是数据可视化中常用的一个工具。常用参数如下, 使用代码: import matplotlib.pyplot as plt ...
导入模块pyplot,并给它指定别名plt,以免反复输入pyplot。在模块pyplot中包含很多用于生产图表的函数。 将绘制的直线坐标传递给函数plot()。 通过函数plt.show()打开Matplotlib查看器,显示绘制的图形。 【示例】根据两点绘制一条线 代码语言:javascript 代码运行次数:0 ...
Matplotlib 散点图 我们可以使用 pyplot 中的 scatter() 方法来绘制散点图。 scatter() 方法语法格式如下: matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=..
Matplotlib.pyplot.plot 绘图 matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs)
plt.scatter(age, rating) # 添加描述信息 plt.title('运动员年龄与评分散点图') plt.xlabel('年龄') plt.ylabel('评分') plt.show() 3. 绘制直方图 利用直方图查看运动员的年龄(Age)分布 代码语言:txt AI代码解释 import pandas as pd import matplotlib.pyplot as plt ...
scatter(x, y, 点的大小, 颜色,标记),这是最主要的几个用法,如果括号中不写s= c=则按默认顺序,写了则按规定的来,不考虑顺序 import matplotlib.pyplot as plt #x,y,大小,颜色 plt.scatter([1,2,3,4],[2,4,6,8],[10,20,30,400],['r', 'b','y','k']) ...