imshow(X,cmap=None,norm=None,aspect=None,interpolation=None,alpha=None,vmin=None,vmax=None,origin=None,extent=None,shape=None,filternorm=1,filterrad=4.0,imlim=None,resample=None,url=None,*,data=None,**kwargs) 参数说明: X:输入数据。可以是二维数组、三维数组、PIL图像对象、matplotlib路径对象等。
import matplotlib.pyplot as plt import numpy as np data = np.random.rand(900, 30) fig, ax = plt.subplots() img0 = ax.imshow(data[:720,:], cmap='Blues', vmin=0, vmax=1, extent=[0, 30, 0, 719], origin='lower', aspect="auto") img1 = ax.imshow(data[720:,:], cmap='Re...
importmatplotlib.pyplotasplt plt.imshow(img) imshow()函数格式为: matplotlib.pyplot.imshow(X,cmap=None) X: 要绘制的图像或数组。 cmap: 颜色图谱(colormap), 默认绘制为RGB(A)颜色空间。 用的比较多的有gray,jet等,如: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 plt.imshow(image,plt.cm.gr...
问Matplotlib :直接应用cmap与imshow()不同EN我有一个单波段图像的尺寸(62,62),范围从0,0.3。对...
import numpy as np from matplotlib import cm import matplotlib.pyplot as plt t1 = np.arange(9).reshape(3,3) t2 = t1.copy() t2[1,1] = 10 t3 = t2.copy() t3[1,1] = 11 cmap = cm.get_cmap('tab20', 11) fig, axs = plt.subplots(1,3) axs[0].imshow(t1, cmap = cmap, ...
import numpy as np import matplotlib.pyplot as plt %matplotlib inline img = np.zeros((20, 20)) plt.imshow(img, cmap='gray') # displays an all-black image as expected img2 = img + 255 plt.imshow(img2, cmap='gray') # displays an all-black image - should be all white? img2[2...
雷达图:通过plt.polar函数创建极坐标系,适用于比较多个指标的情况,如王者荣誉战绩表。热力图:使用plt.imshow展示数据相关性,通过cmap参数调整颜色渐变,以直观表现数据间的相关性。数据分布的箱型图与数据表 箱型图:plt.boxplot用于揭示数据分布情况,异常点可以一目了然。带数据表的图表:plt.table...
We can specify the colormap using the cmap argument to the plotting function that is creating the visualization (Figure 4-50): In[4]: plt.imshow(I, cmap='gray'); Figure 4-50. A grayscale colormap All the available colormaps are in the plt.cm namespace; using IPython’s tab-comple...
Extremely simple yet powerful header-only C++ plotting library built on the popular matplotlib - matplotlib-cpp/matplotlibcpp.h at master · lava/matplotlib-cpp
plt.colorbar(); plt.imshow(I, cmap='gray'); cmap的色系 viridis cubehelix RdBu jet 多个子图绘制 %matplotlib inlineimportmatplotlib.pyplotasplt plt.style.use('seaborn-white')importnumpyasnp#不同的水平轴ax1=plt.axes()# standard axesax2=plt.axes([0.65,0.65,0.2,0.2])#通过在图上增加水平坐标...