下面是一个基于K-means聚类算法的MATLAB代码示例,以及相关的步骤说明。 1. 确定聚类算法类型 我们选择K-means聚类算法作为示例。 2. 准备数据集,并导入到MATLAB中 假设我们有一个二维数据集,可以直接在MATLAB中生成或者从文件中导入。以下是一个生成示例数据集的代码: matlab % 生成示例数据集 rng('default'); %...
matlab聚类算法代码 下面是使用MATLAB的k-means聚类算法的示例代码: %加载数据 data=load('txt'); %初始化变量 k=3;%聚类的数量(k) max_iters=10;%最大迭代次数 m=size(data,1);%数据点数目 n=size(data,2);%特征数目 centroids=zeros(k,n);%质心 %初始化质心 rand_indices=randperm(m); centroid...
K-means聚类算法matlab程序代码 clear clc x=[0 0;1 0;0 1;1 1;2 1;1 2;3 2;6 6;7 6;8 6;6 7;7 7;8 7;9 7;7 8;8 8;9 8;8 9;9 9]; z=zeros(2,2); z1=zeros(2,2); z=x(1:2,1:2); % % 寻找聚类中心 while 1 count=zeros(2,1); allsum=zeros(2,2); for ...
步骤1 设置引领蜂、跟随蜂和侦察蜂的数量( 一般有引领蜂数量 = 跟随蜂数量) ;最大迭代次数MCN 以及控制参数Limit; 当前迭代次数Cycle,初始值为1; 聚类类别数 k; 利用最大最小距离积法初始化蜂群,产生 { Z1,Z2,…,ZN } 个初始蜂 群。 步骤2 对初始蜂群进行一次聚类划分,根据式( 5) 计算每只蜜蜂的适...
(4)用cluster函数创建聚类。 1. 2. 3. 4. 方法三:划分聚类,包括K均值聚类和K中心聚类,同样需要系列步骤完成该过程,要求使用者对聚类原理和过程有较清晰的认识。 Matlab中的相关函数和相关聚类方法 pdist函数 用格式:Y=pdist(X,’metric’) 说明:用‘metric’指定的方法计算 X 数据矩阵中对象之间的距离。
谱聚类算法—Matlab代码 % ===% 算法名称: Spectral Clustering Algorithm% 编码作者: Lee Wen-Tsao% 编码邮箱: liwenchao36@163.com% 输入参数:% W ---> 邻接矩阵% k ---> 簇数目% t ---> 拉普拉斯矩阵归一化处理类型% ===%% step1: 清理运行环境clc; clear; close all;%% step2...
这是一个dbscan聚类算法的matlab代码,运行环境为matlabR2010a: % dbscan聚类算法 %输入: % X简单点周围扩展点的数据集 % eps点之间的最小距离 % minpts简单点的最小个数 %输出: % C类别索引 %功能: %使用的dbscan聚类算法 function C = dbscan(X, eps, minpts) %初始化 C = zeros(size(X,1),1);...
部分代码:主函数 clc close all I=imread('football.jpg'); I=double(I)/255; subplot(2,3,1) imshow(I) title('原始图像') for i=2:6 F=imkmeans(I,i); subplot(2,3,i); imshow(F,[]); title(['聚类个数=',num2str(i)]) end 其中部分子函数: function [center]=searchcenter(X,k...