数据筛选、数据集成和数据的归一化处理预处理。最后,利用K-means聚类算法,选择欧几里得计算距离,将消费...
- K 表示算法使用不同的初始质心执行以获得最佳聚类。 - 总成本的计算方法是将每个点到其聚类中心的距离相加,然后对所有聚类求和。 - 基于在 'iterKMeans' 每次迭代期间实现的最小总成本,将像素分配给它们各自的集群,并获得最终的压缩图像。 - 随着集群数量、图像大小和迭代次数的增加,该算法运行速度将变慢。