Diagonal elements, specified as a vector. Ifvis a vector withNelements, thendiag(v,k)is a square matrix of orderN+abs(k). diag([])returns an empty matrix,[]. Data Types:single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64|logical|char ...
Create Diagonal Matrices Create a 1-by-5 vector. v = [2 1 -1 -2 -5]; Usediagto create a matrix with the elements ofvon the main diagonal. D = diag(v) D =5×52 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 -2 0 0 0 0 0 -5 ...
Diagonal elements, specified as a vector. Ifvis a vector withNelements, thendiag(v,k)is a square matrix of orderN+abs(k). diag([])returns an empty matrix,[]. Data Types:single|double|int8|int16|int32|int64|uint8|uint16|uint32|uint64|logical|char ...
Create Diagonal Matrices Create a 1-by-5 vector. v = [2 1 -1 -2 -5]; Usediagto create a matrix with the elements ofvon the main diagonal. D = diag(v) D =5×52 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 -2 0 0 0 0 0 -5 ...
Extract Superdiagonal from Matrix Extract the first diagonal above the main diagonal. syms x y z A = magic(3).*[x, y, z]; diag(A,1) ans = y 7*z Input Arguments collapse all v—Diagonal elements symbolic vector Diagonal elements, specified as a symbolic vector. Ifvis a vector withN...
% Construct the block diagonal matrix % まずブロック対角行列成分を作成 %%分块对角矩阵的生成 dd = eye(Nx); %Nx阶单位阵 ca=Ax/dx^2 - 2*dd/dy^2; %y向差分使主对角元还要再减,减的同时考虑网格长dx,dy,构造“主块”,用ca表示 sca=sparse(ca); %将此Nx阶三对角阵以稀疏阵形式存储为sca...
The diagonal elements of S are nonnegative singular values. If A is an m-by-n matrix and you request k singular values, then S is k-by-k. V— Right singular vectors matrix Right singular vectors, returned as the columns of a matrix. If A is an m-by-n matrix and you request k ...
If an element ofszis0, thenIis an empty matrix. If an element ofszis negative, then the element is treated as0. Example:sz = [2 3]definesIas a 2-by-3 matrix. Data Types:double|single|int8|int16|int32|int64|uint8|uint16|uint32|uint64 ...
Create a 10-by-10 matrix by multiplying an identity matrix, eye(10), by a small number. Get A = eye(10)*0.0001; The matrix A has very small entries along the main diagonal. However, A is not singular, because it is a multiple of the identity matrix. Calculate the determinant of ...
S=sum(A) returns the sum of elements of A along the first arraydimensionwhose size is not equal to 1. If A is a vector, sum(A) returns the sum of elements. If A is a matrix, sum(A) returns a vector of rows containing the sum of each column. If A is a multidimensional array...