I have written a function 'fun' in a separate .m file that I would like to fit to some xy data, using a parameter 'A' as a fitting parameter. However, since the function depends on the input of xdata and the parameter A to run, I am no sure how to fit it using nlinfit (or ...
Fit, fittype, fitoptions 1 답변 How to define fittype object from custom function? 1 답변 전체 웹사이트 R-square: The coefficient of determination File Exchange fittype 문서 errShade(x,y,ePlus,eMinus,lineCol,lineWidth,lt) ...
function y = myCustomFunction(x, a, b)% 示例自定义函数,这里假设为简单的线性函数 y = a * x + b;end 准备数据:提供用于拟合的数据,包括自变量 x 和因变量 y。xData = [1, 2, 3, 4, 5];yData = [2.1, 2.8, 3.4, 4.2, 5.1];使用 fit 函数进行拟合:使用 fit 函数进行曲线拟合...
Hi, I'm trying to fit data to a custom exponential function a*exp(-b*x)+c. No fit is generated and I get the following error in the Results window: "Dimensions of matrices being concatenated are not consistent." I've tried generating clean, simple data to fit: ...
Custom Fit - Error Functions. Learn more about curve fit toolbox, error function, erf, cftool, fit, curve fitting, cumulative distribution function Curve Fitting Toolbox
function y = custom_function(x) y = x^2 + 3*x + 2; end ``` 5.将自定义函数加载到cftool函数中: ```MATLAB f.UserDefinedFunction = @(x) custom_function(x); ``` 6.拟合数据并查看结果: ```MATLAB f.FitTask.Options.Display = 'plot'; f.FitTask.Options.PlotTitle = 'Custom Fit'...
选择拟合类型fit type 和拟合的方式,通过fit options 限定拟合的起始点参数和参数的上下限。 工具箱提供的拟合类型: 参数详细介绍: Custom Equations:用户自定义的函数类型 Exponential:指数逼近,有两种类型 a*exp(b*x)、a*exp(b*x)+c*exp(d*x);
plot(fit1,'r-',xdata,ydata,'k.',outliers,'m*') % 绘制拟合曲线,原始数据,剔除数据点。 hold on plot(fit2,'c--') plot(fit3,'b:') 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 输出结果如下: fit1 = Linear model Poly1: ...
I am trying to fit the model- y = exp(-kx) to my data using fitnlm. I get the alogrithm to converge and the p value also seems to be pretty good but however when I plot my data against the fitted value, it gives me a negative linear fit. Can someone please assist me with th...
Create a fit options object and a fit type for the custom nonlinear model y=a(x−b)n, where a and b are coefficients and n is a problem-dependent parameter. Get fo = fitoptions('Method','NonlinearLeastSquares',... 'Lower',[0,0],... 'Upper',[Inf,max(cdate)],... 'Start...