Element-wise -这些运算符的逻辑阵列上运行相应的元素。 Short-circuit -这些运算上的标量,逻辑表达式。 Element-wise 的逻辑运算符操作元素元素逻辑阵列。符号&,|和〜逻辑数组运算符AND,OR,NOT。 允许短路短路逻辑运算符,逻辑运算。符号 && 和 | | 是短路逻辑符 AND 和 OR。 除了在上述的逻辑运算符,MATLAB ...
importnumpyasnpN=int(1e3 )# 1. elementwise multiplicationa1=np.random.randn(N)b1=np.random.randn(N,N)tmp1=a1*b1-np.einsum('j,ij->ij',a1,b1)print(tmp1.max() )# 2. dottmp1=a1.dot(b1)-np.einsum('i,ij->j',a1,b1)print(tmp1.max() )# 3. tracetmp1=b1.trace()-np.ein...
\frac{1}{x} \sum_{i=1}^{x} \left( \frac{x^2}{x^2+1} \right)^{i} 这里,实际上主体的计算是一个.^,也就是元素乘方(Element-wise power)。 ns=10:500;times=arrayfun(@(x)timeit(@()sum((x^2/(x^2+1)).^linspace(1,2.0,x))/x),ns);plot(ns,times); 当我们测试 $n\in[10...
1) The operations in the algorithm carried out by the function are easily partitioned into sections that can be executed concurrently, and with little communication or few sequential operations required. This is the case for all element-wise operations. ...
This example shows you how to improve performance by running a function on the GPU instead of the CPU, and by vectorizing the calculations. Improve Performance of Element-Wise MATLAB Functions on the GPU Using arrayfun This example shows how to improve the performance of your code by running ...
(H) * s;% compute element-wise squared errorerror_vec = theta - theta_est;error_mat(:,iter) = (abs(error_vec)).^2;% compute total squared error% total_est_error(iter) = sum((abs(error_vec)).^2);% compute the received SNRsnr = abs(s).^2/no_var;snr_db = 10*log10(mean...
2.Sigmoid的输出不是0均值的,这是我们不希望的,因为这会导致后层的神经元的输入是非0均值的信号,这会对梯度产生影响:假设后层神经元的输入都为正(e.g. x>0 elementwise in f=wTx+b),那么对w求局部梯度则都为正,这样在反向传播的过程中w要么都往正方向更新,要么都往负方向更新,导致有一种捆绑的效果,使...
This MATLAB function applies the element-wise binary operation specified by the function handle fun to arrays A and B.
ans = 1 4 9 16 x^2 Error using ^ Inputs must be a scalar and a square matrix. To compute elementwise POWER, use POWER (.^) instead. x=[1 2;3 4] x = 1 2 3 4 x^2 ans = 7 10 15 22 x.^2 ans = 1 4 9 16
To compute elementwise POWER, use POWER (.^) instead. 此时可以利用arrayfun函数解决该问题 f = @(x)x^2; arrayfun(f,[2 3]) 结果为: ans = 4 9 所以,为了避免argin只能为scalar,最好在定义的时候就向量化 f = @(x)x.^2; f([2 3]) ...