Confluent hypergeometric function (Kummer function) 버전 1.0.0.0 (3.47 KB) 작성자: Stepan Yanchenko Computes confluent hypergeometric function 1F1 for complex parameters a, b and complex variable z.팔
此外,抛物柱面函数还可以用贝塞尔函数(Bessel Functions),误差函数(Error Functions),合流超几何函数(Confluent Hypergeometric Functions)等特殊函数进行代换,具体公式如下: 图1 误差函数,道森积分,概率函数 图2 贝塞尔函数 图3 合流超几何函数 对于公式12.7.14,因为函数右侧是多值的(3个)所以直接用(-z)代换z是不可...
hypergeom1f1 - Confluent Hypergeometric function or Kummer's M function logsum - Calculates log(sum(exp(x))) without overflow/underflow minspane - calculate the minimum (or shortest) spanning tree mintrace - find a row permutation to minimize the trace of a matrix m2htmlpwd - Create HTML do...
function y = Kummer(a,b,z,maxit) % This function implements 1F1(.;.;.), Confluent Hypergeometric function. % % INPUTS: % a = Scalar and complex % b = Scalar and complex % z = Scalar and complex % maxit = Scalar and real number specifying maximum number of iteration. % Default,...
function y = Kummer(a,b,z,maxit) % This function implements 1F1(.;.;.), Confluent Hypergeometric function. % % INPUTS: % a = Scalar and complex % b = Scalar and complex % z = Scalar and complex % maxit = Scalar and real number specifying maximum number of iteration. ...
The Whittaker W function is defined via the confluent hypergeometric functions: Wa,b(z)=e−z/2zb+1/2U(b−a+12,1+2b,z) Tips All non-scalar arguments must have the same size. If one or two input arguments are non-scalar, thenwhittakerWexpands the scalars into vectors or matrices of...
Confluent Hypergeometric Function of the First Kind 1 回答 How to evaluate integral from 0 to inf of besselj(0,kr) * besselj(0,kR) * 1/k * (2 - e^-kz - ek(z-L)) dk 1 回答 ウェブサイト全体 elliptic File Exchange kummerln(a,b,x) File Exchange ApproximantCoefficientsSEIR Fi...
问在Matlab中用向量求超几何函数EN依然是机房中的R2010a版本 命令: 1、x=fminsearch(fun,x0)...
KUMMERCOMPLEX(a,b,z) is the confluent hypergeometric function 1F1 (Kummer function) for complex parameters a, b and complex variable z. In general case the program calculates the sum of convergent series defining the function until the next term becomes too small (in comparison with the sum ...