1.Matlab实现TCN-Attention时间卷积神经网络融合注意力机制多变量时间序列预测; 自注意力层 (Self-Attention):Self-Attention自注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。自注意力能够帮助模型在处理序列数据时,对不同位置...
attentionLayer = AttentionLayer('SelfAttention',inputSize,numHeads,d_k); 创建全连接层作为输出层 outputSize =10;输出大小 fcLayer = fullyConnectedLayer(outputSize); 创建模型 model = sequential([attentionLayer fcLayer]); 定义训练数据和标签 XTrain =randn(1000,inputSize);1000个样本,每个样本大小为in...
BiTCN-Attention是一种结合了双向时间卷积神经网络(BiTCN)和注意力机制(Attention)的模型,用于多变量时间序列预测。这种模型能够有效地处理具有复杂时间依赖性和多个相关变量的数据集,通过捕获这些变量之间的长期和短期关系,以及不同时间点上的重要性,来提高预测的准确性。 在BiTCN-Attention模型中,双向时间卷积神经网络...
1.Matlab实现GWO-CNN-BiLSTM-selfAttention灰狼算法优化卷积双向长短期记忆神经网络融合自注意力机制多变量多步时间序列预测,灰狼算法优化学习率,卷积核大小,神经元个数,以最小MAPE为目标函数; 自注意力层 (Self-Attention):Self-Attention自注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每...
基本描述 1.Matlab实现KOA-CNN-BiGRU-selfAttention开普勒算法优化卷积双向门控循环单元融合自注意力多特征分类预测,多特征输入模型,运行环境Matlab2023b及以上; 2.基于开普勒算法(KOA)优化卷积双向门控循环单…
1.Matlab实现GWO-CNN-GRU-selfAttention灰狼算法优化卷积门控循环单元融合自注意力机制多变量多步时间序列预测,灰狼算法优化学习率,卷积核大小,神经元个数,以最小MAPE为目标函数; CNN卷积核大小:卷积核大小决定了CNN网络的感受野,即每个卷积层可以捕获的特征的空间范围。选择不同大小的卷积核可以影响模型的特征提取能力...
基本介绍1.Matlab实现GWO-CNN-LSTM-selfAttention 灰狼算法优化卷积长短期记忆神经网络融合自注意力机制多变量多步时间序列预测,灰狼算法优化学习率,卷积核大小,神经元个数,以最小MAPE为目标函数;自注意力层 …
基本描述 1.Matlab实现KOA-CNN-BiLSTM-selfAttention开普勒算法优化卷积双向长短期记忆神经网络融合自注意力多特征分类预测,多特征输入模型,运行环境Matlab2023b及以上; 2.基于开普勒算法(KOA)优化卷积双向长短…