1.Matlab实现QPSO-LSTM、PSO-LSTM和LSTM神经网络时间序列预测; 2.输入数据为单变量时间序列数据,即一维数据; 3.运行环境Matlab2020及以上,依次运行Main1LSTMTS、Main2PSOLSTMTS、Main3QPSOLSTMTS、Main4CDM即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集; LSTM(长短时记忆模型)与粒子群算法优化...
MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测,用于处理时间序列数据;适用平台:Matlab 2023及以上 1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测; 2.主程序文件,运行即可; 3.命令窗口输出R2、MAE、MAPE、MSE和MBE; 注...
1.Matlab实现PSO-LSTM粒子群算法优化长短期记忆神经网络的数据多输入分类预测,运行环境Matlab2020b及以上; 2.优化参数为:学习率,隐含层节点,正则化参数。 3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用; 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图; 4.data为数据...
1.Matlab实现PSO-Transformer-LSTM多变量回归预测,粒子群优化Transformer结合LSTM长短期记忆神经网络多变量回归预测(程序可以作为JCR一区级论文代码支撑,目前尚未发表); 2.粒子群优化参数为:学习率,LSTM隐含层节点,正则化参数,运行环境为Matlab2023b及以上; 3.data为数据集,输入多个特征,输出单个变量,多变量回归预测,mai...
这篇文章介绍了一种使用Matlab实现的高级预测模型,即PSO-Transformer-LSTM,特别适用于多变量回归预测。这个创新性的方法将粒子群优化(PSO)与Transformer和LSTM神经网络相结合,旨在提供更精确的结果,且代码有望成为JCR一区级研究的有力支持,尽管目前尚未发表。模型的核心参数包括:学习率,这影响着粒子群...
另一个被引入的技术是粒子群优化(PSO),它是一种基于群体智能的优化算法,可以用于寻找最优的神经网络参数。通过将PSO与LSTM和注意力机制相结合,研究人员希望能够构建一个更强大的时间序列预测模型。 在这项研究中,研究人员首先收集了多变量时间序列数据,这些数据涵盖了多个相关变量的观测。然后,他们设计了一个PSO-BiL...
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLO...
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLO...
提出一种基于粒子群优化( PSO) 的长短期记忆( LSTM) 预测模型( PSO-LSTM) ,该模型在LSTM 模型的基础上进行改进和优化,因此擅长处理具有长期依赖关系的、复杂的非线性问题。通过自适应学习策略的PSO 算法对LSTM 模型的关键参数进行寻优,使数据特征与网络拓扑结构相匹配,提高预测精度。 PSO模型 粒子群算法的思想源于...
Matlab实现PSO-LSTM粒子群优化长短期记忆神经网络多输入多输出预测(完整源码和数据) 1.data为数据集,输入10个特征,输出3个变量。 2.main.m为程序主文件,其他为函数文件无需运行。 3.命令窗口输出MBE、MAE、RMSE、R^2和MAPE,可在下载区获取数据和程序内容。