1.Matlab实现TCN-LSTM时间卷积长短期记忆神经网络多变量时间序列预测; 2.运行环境为Matlab2023a及以上; 3.data为数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。
MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测,用于处理时间序列数据;适用平台:Matlab 2023及以上 1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测; 2.主程序文件,运行即可; 3.命令窗口输出R2、MAE、MAPE、MSE和MBE; 注...
MATLAB实现GWO-LSTM灰狼算法优化长短期记忆神经网络的多变量时间序列预测 1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测; 2.GWO-LSTMNTS.m为主程序文件,运行即可; 3.命令窗口输出R2、MAE和MBE; 注意程序和数据放在一个文件夹,运行环境为Matlab2021b及以上。 注意程...
1.Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测; 2.运行环境为Matlab2021及以上; 3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测; 4.data为数据集,main1_VMD.m、main2_VMD_CNN_LSTM.m为主程序,运行即可,所有文件放在一个文件夹; 5.命令窗...
本文旨在介绍如何在Matlab环境中利用TCN-LSTM(时间卷积长短期记忆神经网络)进行多变量时间序列的预测。支持Matlab2023a及以上版本运行,它适用于处理包含多个输入特征,但目标变量为单个的情况。预测过程中,着重考虑了历史数据对结果的影响,整个预测流程通过主程序main.m来驱动,所有相关文件需组织在同一个...
1.Matlab实现基于QRCNN-LSTM卷积神经网络结合长短期记忆神经网络多变量时间序列区间预测; 2.多图输出、点预测多指标输出(MAE、MAPE、RMSE、MSE、R2),区间预测多指标输出(区间覆盖率PICP、区间平均宽度百分比PINAW),多输入单输出,含点预测图、不同置信区间预测图、误差分析图、核密度估计概率密度图; ...
1.Matlab实现基于QRCNN-LSTM-Multihead-Attention卷积神经网络结合长短期记忆神经网络多头注意力多变量时间序列区间预测; 2.多图输出、点预测多指标输出(MAE、MAPE、RMSE、MSE、R2),区间预测多指比输出(区间覆盖率PICP、区间平均宽度百分比PINAW),多输入单输出,含点预测图、不同置信区间预测图、误差分析图、核密度估计...
1.Matlab实现基于CNN-LSTM-KDE卷积神经网络结合长短期记忆神经网络多变量时间序列区间预测; 2.多图输出、点预测多指标输出(MAE、MAPE、RMSE、MSE、R2),区间预测多指标输出(区间覆盖率PICP、区间平均宽度百分比PINAW),多输入单输出,含点预测图、不同置信区间预测图、误差分析图、核密度估计概率密度图; ...
1.Matlab实现LSTM-Mutilhead-Attention长短期记忆神经网络融合多头注意力机制多变量时间序列预测模型(完整源码和数据) 2.运行环境Matlab2023及以上,excel数据集,多列输入,单列输出,方便替换数据,考虑历史特征的影响; 3.多指标评价,评价指标包括:R2、MAE、MAPE、MSE等,代码质量极高。
基本介绍 > 1.Matlab实现基于QRCNN-LSTM-Multihead-Attention卷积神经网络结合长短期记忆神经网络多头注意力多变量时间序列区间预测; 2.多图输出、点预测多指标输出(MAE、MAPE、RMSE、MSE、R2),区间预测多指…