同时设置CNN-LSTM-Attention模型的最大迭代次数为500,学习率为0.005,得到的结果如下所示(以上参数均可自行更改): 预测未来效果图: 训练集预测结果图: 测试集预测结果图: 预测结果展示: 可以看到,CNN-LSTM-Attention模型能够较好预测未来趋势,当然,由于深度学习模型迭代具有随机性,因此每次运行结果可能会不同,小伙伴们也
Matlab实现CNN-LSTM-Attention多变量回归预测 1.data为数据集,格式为excel,7个输入特征,1个输出特征; 2.MainCNN_LSTM_Attention.m为主程序文件,运行即可; 3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容; 注意程序和数据放在一个文件夹,运行环境为Matlab2020b及以上。 4.注意力机制模块: ...
MATLAB实现CNN-LSTM-Attention多输入单输出回归预测,CNN-LSTM结合注意力机制多输入单输出回归预测。 模型描述 Matlab实现CNN-LSTM-Attention多变量回归预测1.data为数据集,格式为excel,7个输入特征,1个输出特征;2.MainCNN_LSTM_Attention.m为主程序文件,运行即可;3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获...
实验结果表明,EVO-CNN-LSTM-Attention模型在风电功率预测任务上取得了优异的性能。与其他基准模型相比,EVO-CNN-LSTM-Attention模型的RMSE和MAE均较低,预测精度更高。 4. 结论 本文提出了一种基于能量谷算法优化卷积神经网络结合注意力机制的长短记忆网络(EVO-CNN-LSTM-Attention)的风电功率多输入单输出回归预测模型。该...
🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 ⛄ 内容介绍 本文提出了一种基于注意力机制的混合CNN-LSTM系统模型,如图1所示。该模型由CNN网络、LSTM网络、融合层和全连接层4部分构成。该模型的主要思路为:在通道1中,利用BiLSTM网络进行双向全局时间特征的充分提取;同时,在通道2中,利用一维卷积神经网络(...
最后完成Reweight操作,对输入特征进行逐通道加权,实现特征在各通道上的重新分配。该模型的设计与实现参考了以下文献:> [1] 回归预测 | MATLAB实现CNN-LSTM-Attention多输入单输出回归预测 > [2] 回归预测 | MATLAB实现CNN-BiLSTM-Attention多输入单输出回归预测 > [3] 回归预测 | MATLAB实现CNN-...
[Image of TSOA-CNN-LSTM-Mutilhead-Attention model structure] 该模型由以下部分组成: **卷积层:**提取图像中的空间特征。 **LSTM 层:**处理序列数据。 **多头注意力层:**同时关注序列的不同部分。 **全连接层:**输出分类结果。 为了优化模型的超参数,本文采用了凌日优化算法。凌日优化算法是一种基于种群...
本文介绍如何使用MATLAB实现CNN-LSTM-SAM-Attention卷积长短期记忆神经网络融合空间注意力机制的数据分类预测模型。模型特点包括多输入,单输出和多分类能力。此模型提供了全面的数据可视化,包括多边形面积PAM、分类准确率、灵敏度、特异性、曲线下面积AUC、Kappa系数和F_measure等指标。模型实现中包含了完整源码...
1.Matlab实现基于QRCNN-LSTM-Multihead-Attention卷积神经网络结合长短期记忆神经网络多头注意力多变量时间序列区间预测; 2.多图输出、点预测多指标输出(MAE、MAPE、RMSE、MSE、R2),区间预测多指比输出(区间覆盖率PICP、区间平均宽度百分比PINAW),多输入单输出,含点预测图、不同置信区间预测图、误差分析图、核密度估计...
1.Matlab实现基于QRCNN-LSTM-Attention分位数回归卷积长短期记忆神经网络融合注意力机制的时间序列区间预测模型; 2.多图输出、多指标输出(MAE、MAPE、RMSE、MSE、R2、区间覆盖率、区间平均宽度百分比),单变量时…