4)科研中解方程组时Solve遇到的问题:当方程中的系数等都是很复杂的小数时,此方程组无法用solve得到自洽的精确的解!此时只有自己在纸上解方程组!!! a.output解集为空的原因是:这些方程中的系数等都是很复杂的小数,所以这个方程组无法用solve得到自洽的精确的解!此时只有自己在纸上解方程组!!! b.提示信息:“So...
以未激活积分形式解三维拉普拉斯方程. In[1]:= 通过制定函数f,获取特定的解. In[2]:= In[3]:= Out[3]= In[4]:= Out[4]= 可视化解. In[5]:= Out[5]= 验证解. In[6]:= Out[6]= Mathematica 試用購買Mathematica 可以在 Windows,
在区域上解方程式 使用区域约束求解方程和不等式. 用 表示区域约束,它可以和其他约束一起使用. 符号式方程式求解器以及全局数值方程求解器支持这些新的约束. 找出两条无限长线的交点. In[1]:= In[2]:= Out[2]= In[3]:=Out[3]=
the cases are very simple, and only contain a few simple letters, and the rest are numbers, so I am thinking Could it be that Solve can't solve my type of equation system. Then I looked at the tutorial on understanding equations and...
2.1 To operate in steps, first prove Equation (13). image 3 For the first time, I understood VR'(r) in the original text as the derivation of r in the formula VR, so I wrote the code in Figure 4, but the calculation results did not match the paper. Figure 4 So I thought ab...
(* 定义变量和方程 *) a = 1; b = 2; c = 3; equation = a*x^2 + b*x + c == 0; (* 尝试求解方程 *) solutions = Solve[equation, x]; (* 输出解 *) solutions 如果这段代码仍然无法运行出结果,请检查Mathematica的输出单元以获取可能的错误或警告信息,并据此调整代码或计算环境。如果问...
2.1 To operate in steps, first prove Equation (13). image 3 For the first time, I understood VR'(r) in the original text as the derivation of r in the formula VR, so I wrote the code in Figure 4, but the calculation results did not match the paper. Figure 4 So I thought about...
(The Mathematica function NDSolve, on the other hand, is a general numerical differential equation solver.) DSolve can handle ordinary differential equations, partial differential equations, and differential-algebraic equations.Drawn from the in-product documentation of Mathematica, the 23-title Tutorial ...
ClearAll[x, y, t] X0[t_] := {x[t], y[t]}; A0 = {{-1,2}, {-2,3}}; eqs = Thread[D[X0[t], t] == A0.X0[t] + {1,0}] DSolve[eqs, X0[t], t]// FullSimplify 参考 Can I solve system of differential equation in a matrix form?
boolean result = equation.solve(values); if (result) { System.out.println("方程不等式成立"); } else { System.out.println("方程不等式不成立"); } } } ``` 在Main类中,我们定义了一个包含两个变量的方程不等式,并通过Equation类求解了给定变量值下的结果。根据不等式的成立情况输出相应的提示信息...