22、 Accuracyx 给出x小数全体位数,对于于Pi,E等为无穷年夜Precisionx 给出x无效数字位数,对于于Pi,E等为无穷年夜SetAccuracyexpr, n 配置expr隐示时的小数全体位数SetPrecisionexpr, n 配置expr隐示时的无效数字位数10一、区间函数Intervalmin, max 区间min, max(* Solve3 x+2=Interval-2,5,xx*) IntervalMe...
MArgumentRes){autoerr=LLU::ErrorCode::NoError;LLU::MArgumentManagermngr{libData,Argc,Args,Res};autoin=mngr.getTensor<mint>(0);sort(in.begin(),in.end());for_each(in.begin(),in.end(),[](auto&x){x=x+2;});mngr.setTensor(in);returnerr;}...
对x1,x2.的偏微分 Integratef, x fx对x在的不定积分 Integratef, x, xmin, xmax fx对x在区间(xmin,xmax)的定积分 Integratef, x, xmin, xmax, y, ymin, ymax fx,y的二重积分 Limitexpr, x->x0 x趋近于x0时expr的极限 Residueexpr, x,x0 expr在x0处的留数 Seriesf, x, x0, n 给出...
This defines a value for the function gamma when its argument is an integer. In[2]:= gamma@n_IntegerD := Hn - 1L ! The definition applies only when the argument of gamma is an integer. In[3]:= gamma@4D + gamma@xD Out[3]= 6 + gamma@xD 80 Core Language The object 4. has ...
实例如下所 示: In[4]:=Sqrt[3,3] Sqrt::argx: Sqrt called with 2 arguments; 1 argument is expected. Out[4] = Sqrt[3,3] 第 2 章 Mathematica中的各种运算 Mathematica 中最基本的功能就是进行各种运算,例如:数值运算、符号运算、解方程 等等,本章将介绍使用Mathematica 如何实现这些运算。 2. 1...
return value function value anonymous function Function[{a, b}, a + b](#1 + #2) & lambda([a, b], a + b) missing argument error extra argument error default argument variable number of arguments f(x, [L]) := if emptyp(L) then x else [x, apply("+", L)];f(1);...
third argument allows a change of the Options of ContourPlot and PlotGradientField."; (* --- define the global variables x,y,z --- *) x::usage; y::usage; z::usage; Begin["`Private`"]; (* --- determine the potential --- *) ...
Symbol, Grid[CategoricalVectorSummary[#3, maxTallies], Alignment -> Left] ] }] &, {columnNames, columnTypes, dataColumns}, 1]] /; Length[dataColumns] == Length[columnNamesArg];RecordsSummary::args = "The first argument is expected to be a full array of depth 1 or 2, \...
resCalibration = sdObj2⟹ SDMonCalibrate[ "Target" -> KeyTake[aTargets2, {X, Y}], "Parameters" -> <|fireEfficiencyX -> {0, 0.1}, fireEfficiencyY -> {0, 0.1}|>, DistanceFunction -> EuclideanDistance, Method -> {"NelderMead", "PostProcess" -> False}, MaxIterations -> 1000]...
(y,x)=argument(x+y*I) (在 –π 与π 间取值) 计算平面上点(x,y)得幅角 sqrt(x) 平方根函数 exp(x), ln[x] 指数函数和自然对数函数 log[b](x) 以b 为底的对数函数 abs[x] 绝对值函数 round(x) 最接近x 的整数 rand () 12 位的随机数 max[a,b,c, ],min[a,b,c, ] a, b, ...