If we want to convert the vector to a one column matrix we write… // 转置,变为列向量(单列的矩阵) Transpose[{vec}] {{1}, {2}, {3}} 1. 2. 3. We could use matrix multiplication on these to generate a 3x3 matrix. // 列向量乘以行向量得到一个矩阵 Transpose[{vec}].{vec} {{...
2、矩阵的加减乘除(Addition, subtraction, multiplication and division of a matrix) 将矩阵用表,表示出来,然后运用Mathematica基本的加减乘除运算法则来进行计算,如下图所示。 The matrix is tabulated and then calculated using Mathematica's basic addition, subtraction, multiplication,...
as 1xn matrix:row(A, 1) column access col(A, 1) submatrix access # [[1]] & /@ A scalar multiplication 3 AA 3* can also be used 3 * AA * 3 element-wise operators + - * /adjacent matrices are multiplied element-wise + - * / multiplication A . B A . B kronecker...
A equals to the number of rows in B, and display an error message if this condition is not satisfied; (b) The calculation of C must be accomplished by using triple nested for loops, but NOT using any built-in MATLAB matrix multiplication function or operator; (c) After the calculation, ...
To express a matrix-vector product in terms of Indexed objects: In [23]: x = IndexedBase('x') In [24]: M[i, j]*x[j] Out[24]: M[i, j]⋅x[j] If an IndexedBase object has no shape information, it is assumed that the array is as large as the ranges of its indices: ...
1 进入数学快速入门官网文档 2 面向数学学习的快速入门指南 2.1 内容输入 2.2 分数与小数 2.3 变量与函数 2.4 代数 2.5 二维绘图 2.6 几何 2.7 三角函数 2.8 极坐标 2.9 指数和对数 2.10 极限 2.11 导数 2.12 积分 2.13 序列、求和与级数 2.14 更多二维绘图 ...
It got even weirder when one started dealing with multi-argument functions. It was quite nice that one could define a matrix withm:{{a,b},{c,d}}, thenm[1]would be{a,b}, and eitherm[1,1]orm[1][1]would bea. But what if one had a function with several arguments? Wouldf[x,...
When we plug in a vector for v we end up with a 2 2 matrix: In[14]:= v 0, 1 Out[14]= v, 1 v In[15]:= v 0, 1 . v Out[15]//MatrixForm= 00 11 0, 0 MatrixForm However, if we subtitute 0, 0 for v immediately, we get a vector: In[16]:= 0, 0 0, 1 Out[16...
16.15 Matrix Representation of the Linear Operator 359 17 Application of Mathematica to Quantum Mechanics 361 17.1 Introduction 361 17.2 A Particle in a One-Dimensional Box 361 17.3 A Particle in a Two-Dimensional Box 365 17.4 The Hydrogen Atom Problem 368 ...
27 • VectorSpace • SubSpace • TensorSpace • CommutativeLieAlgebra • MatrixLieAlgebra • SubAlgebra • QuotientAlgebra • AlgebraDecomposition • HWModule • SubModule • QuotientModule • RestrictModule • Ideal • PiLeft, PiRight, MRight • CoLeft • DLeft • ...