In the prequel of this paper, we have associated a family of cluster X-varieties to the dual Poisson-Lie group(G*,\pi_*) of (G,\pi_G) when (G,\pi_G) is a complex semi-simple Lie group of adjoint type, given with the standard Poisson structure \pi_G and \pi_* is the "dual...
Cluster $\\mathcal X$ -varieties for dual Poisson–Lie groups.I 来自 Math-net 喜欢 0 阅读量: 21 作者: R Brahami 摘要: We associate a family of cluster -varieties with the dual Poisson–Lie group of a complex semi-simple Lie group of adjoint type given with the standard Poisson...
PointCNN: group neighborhood points ==> XConv XConv:input: rep_pt(N, P,3), pts(N, P, K,3), fts(N, P, K, dim)# 中心点 分组后的点云 对应的特征forward: p_centor = rep_pt.unsqueeze(rep_pt, dim=2)# (N, P, 1, 3)pts_local = pts - p_center# (N, P, K, 3)fts_lif...
Let $$({\mathcal X},d,\mu )$$ be a metric measure space of homogeneous type in the sense of R. R. Coifman and G. Weiss and $$H^1_\mathrm{at}({\mathcal X})$
Let D be an integral domain, ${\mathcal{X}}$ be an infinite set of indeterminates over D, and $D[[{\mathcal{X}}]]_i$ be the ith type of power series ring over D for i = 1, 2, 3. For $f \in D[[{\mat...
The Dirichlet Series $$L(s; \\mathcal{X})$$ 来自 Springer 喜欢 0 阅读量: 6 作者: R Godement 摘要: Legendre guessed the formula and Gauss attained instant fame by proving it. Finding generalizations, for example for rings of algebraic integers, or other proofs was a national sport ...
A Clingher,A Malmendier,X Roulleau 摘要: We prove that every K3 surface with automorphism group ( Z / 2 Z ) 2 (\mathbb{Z}/2\mathbb{Z})^2 admits an explicit birational model as a double sextic surface. This model is canonical for Picard number greater than 10. For Picard number ...
We present $mathcal{X}^3$ (pronounced XCube), a novel generative model for high-resolution sparse 3D voxel grids with arbitrary attributes. Our model can generate millions of voxels with a finest effective resolution of up to $1024^3$ in a feed-forward fashion without time-consuming test-...
Write a symbolic expression for \(\mathcal{N}(x)\) in terms of \(L\), \(a\), \(E_1\), \(A_2\), and \(x\). What is the value (in Newtons) of \(\mathcal{N}\) at \(x=0\)?\(\mathcal{N}(x) =\)\(\mathcal{N}(x\!=\!0) =\)___ 相关知识点: 试题来源...
a.y > b.y : a.x < b.x; } } a[maxn]; inline void Insert (register int x, register int val) { for (; x <= leny; x += x & -x) tree[x] = addmod (tree[x], val); } inline int Query (register int x, register int ans = 0) { for (; x; x -= x & -x) ...