PointCNN: group neighborhood points ==> XConv XConv:input: rep_pt(N, P,3), pts(N, P, K,3), fts(N, P, K, dim)# 中心点 分组后的点云 对应的特征forward: p_centor = rep_pt.unsqueeze(rep_pt, dim=2)# (N, P, 1, 3)pts_local = pts - p_center# (N, P, K, 3)fts_lif...
In the prequel of this paper, we have associated a family of cluster X-varieties to the dual Poisson-Lie group(G*,\pi_*) of (G,\pi_G) when (G,\pi_G) is a complex semi-simple Lie group of adjoint type, given with the standard Poisson structure \pi_G and \pi_* is the "dual...
Let ${\\mathcal X}$ be an RD-space, which means that ${\\mathcal X}$ is a space of homogenous type in the sense of Coifman and Weiss with the additional pr... D Yang,Y Zhou - 《Transactions of the American Mathematical Society》 被引量: 165发表: 2011年 Hardy Spaces $H_L...
收藏 分享 下载 举报 用客户端打开
S Chen,X Tang - 《Zeitschrift Für Angewandte Mathematik Und Physik》 被引量: 0发表: 2016年 The mass of the adjoint pion in \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\u... This paper is dedicated to stu...
Write a symbolic expression for \(\mathcal{N}(x)\) in terms of \(L\), \(a\), \(E_1\), \(A_2\), and \(x\). What is the value (in Newtons) of \(\mathcal{N}\) at \(x=0\)?\(\mathcal{N}(x) =\)\(\mathcal{N}(x\!=\!0) =\)...
If $(X, \mathcal O_X)$ is a scheme, what is $\mathcal O_X(U)$ where $U$ is any open subset (not necessarily affine open)? Below is what I currently know. Let $A$ be a ring. Hartshorne defines the structure sheaf on $\operatorname{Spec}(A)$ as: F...
Given the convention (\mathcal{F}f)(\xi)=\dfrac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}f(x)e^{-ix\xi}dx, the Fourier transform of the function f(x)=cos(x)e^(-x^2) is A. 1(√2)e^(-(1+ξ^2)/4)cosh(ξ/2); B. 1(2√2)e^(-(1+ξ^2)/4)cosh(ξ/2); C....
摘要: On Weak$^*$-convergence in the Localized Hardy Spaces $H^1_ho(\\mathcal{X})$ and its Application 关键词: Mathematics - Classical Analysis and ODEs Mathematics - Functional Analysis 42B30 DOI: 10.11650/tjm.20.2016.7020 被引量: 3 ...
a.y > b.y : a.x < b.x; } } a[maxn]; inline void Insert (register int x, register int val) { for (; x <= leny; x += x & -x) tree[x] = addmod (tree[x], val); } inline int Query (register int x, register int ans = 0) { for (; x; x -= x & -x) ...