百度试题 题目请利用math库运行语句:math.gcd(12,9)结果为: A.3B.-3C.2D.-2相关知识点: 试题来源: 解析 A 反馈 收藏
use MathPHP\Algebra; // Greatest common divisor (GCD) $gcd = Algebra::gcd(8, 12); // Extended greatest common divisor - gcd(a, b) = a*a' + b*b' $gcd = Algebra::extendedGcd(12, 8); // returns array [gcd, a', b'] // Least common multiple (LCM) $lcm = Algebra::lcm(...
maxGridSize[1]; int t1 = cols % MAX_THREADS; int t2 = (t1 + WARP_SIZE - 1) / WARP_SIZE; int t3 = t2 * WARP_SIZE; int threads_x = gcd(MAX_THREADS, t3); int blocks_x = Math.max(1, (cols + (threads_x - 1)) / (threads_x)); int block_height = Math.max(8, MAX...
(-inf) = nan */ } } static PyObject * math_gcd(PyObject *module, PyObject * const *args, Py_ssize_t nargs) { PyObject *res, *x; Py_ssize_t i; if (nargs == 0) { return PyLong_FromLong(0); } res = PyNumber_Index(args[0]); if (res == NULL) { return NULL; } ...
math.gcd(8,6) 2 16.得到(x2+y2),平方的值 math.hypot(3,4) 5.0 17.isfinite()如果x不是无穷大的数字,则返回True,否则返回False math.isfinite(0.1) True 18.isinf()如果x是正无穷大或负无穷大,则返回True,否则返回False math.isinf(234) ...
>>> math.gcd(8,6) 2 16. 得到(x2+y2),平方的值 >>> math.hypot(3,4) 5.0 17. isfinite()如果x不是无穷大的数字,则返回True,否则返回False >>> math.isfinite(0.1) True 18. isinf()如果x是正无穷大或负无穷大,则返回True,否则返回False ...
9.gcd(a, b):计算两个整数的最大公约数,非零值为正整数。10.isclose(a, b):根据给定容差判断两个值是否接近。11.isfinite(x):判断x是否是有限数,不包括无穷大和NaN。12.isinf(x):检测x是否为正或负无穷大。13.isnan(x):检测x是否为非数字(NaN)。14.ldexp(x, i):计算x乘以2...
private static BigInteger gcd1(BigInteger n, BigInteger d) { BigInteger n1 = n.abs(); BigInteger n2 = d.abs(); BigInteger temp; if(n1.equals(new BigInteger("0"))){ // 分子为0, 直接返回1即可 return new BigInteger("1"); } if(n1.compareTo(n2) <= 0) { // 确保n1 > n2 temp ...
9. 10. 11. 12. 13. 4.math.modf() 作用 将一个浮点数分解为整数部分和小数部分,返回一个元组,包含两个浮点数:第一个是小数部分,第二个是整数部分,整数部分是向零取整的结果,它不会四舍五入到最近的整数。 语法 math.modf(x) 1.
HCF (Highest Common factor) or GCD(Greatest Common Divisor): HCF of two or more than numbers is the greatest number (divisor) that divides all the given number exactly. So HCF is also called the greatest common divisor(GCD). Suppose If numbers n1 and n2 are exactly divisible by the same...