PyTorch入门笔记-masked_select选择函数 masked_select torch.masked_select(input,mask,out=None) 函数返回一个根据布尔掩码 (boolean mask) 索引输入张量的 1D 张量,其中布尔掩码和输入张量就是 torch.masked_select(input, mask, out = None) 函数的两个关键参数,函数的参数有: input(Tensor) - 需要进行索引操...
pytorch提供mask机制用来提取数据中“感兴趣”的部分。过程如下:左边的矩阵是原数据,中间的mask是遮罩矩阵,标记为1的表明对这个位置的数据“感兴趣”-保留,反之舍弃。整个过程可以视作是在原数据上盖了一层mask,只有感兴趣的部分(值为1)显露出来,而其他部分则背遮住。(matlab中也有mask操作) mask为一个和元数据siz...
来自专栏 · PyTorch学习笔记 21 人赞同了该文章 torch.masked_select(input, mask, out=None) 函数返回一个根据布尔掩码 (boolean mask) 索引输入张量的 1D 张量,其中布尔掩码和输入张量就是 torch.masked_select(input, mask, out = None) 函数的两个关键参数,函数的参数有: input(Tensor) - 需要进行索引操...
在学习pytorch的官方文档时,发现掩码的程序贴错了,自己写了一个,大家可以参考。 torch.masked_select(input, mask, out=None) → Tensor 根据掩码张量mask中的二元值,取输入张量中的指定项(mask为一个ByteTensor),将取值返回到一个新的1D张量, 张量mask须跟input张量有相同数量的元素数目,但形状或维度不需要相同。
在学习pytorch的官方文档时,发现掩码的程序贴错了,自己写了一个,大家可以参考。 torch.masked_select(input, mask, out=None) → Tensor AI代码助手复制代码 根据掩码张量mask中的二元值,取输入张量中的指定项(mask为一个ByteTensor),将取值返回到一个新的1D张量, ...
pytorch, masked_select masked_select需要数据和mask的size是一样的 example import torch data = torch.randn((51, 2)) mask = torch.empty(51).random_(2) mask = mask.unsqueeze(1).bool() print("select nums", mask.sum()) select = data.masked_select(mask.repeat(1,2)).view(-1, 2) ...
在学习pytorch的官方文档时,发现掩码的程序贴错了,自己写了一个,大家可以参考。 torch.masked_select(input, mask, out=None) → Tensor 根据掩码张量mask中的二元值,取输入张量中的指定项(mask为一个ByteTensor),将取值返回到一个新的1D张量, 张量mask须跟input张量有相同数量的元素数目,但形状或维度不需要相同...
在学习pytorch的官方文档时,发现掩码的程序贴错了,自己写了一个,大家可以参考。 代码语言:javascript 代码运行次数:0 运行 AI代码解释torch.masked_select(input, mask, out=None)→ Tensor 根据掩码张量mask中的二元值,取输入张量中的指定项( mask为一个 ByteTensor),将取值返回到一个新的1D张量, ...
a = torch.Tensor([[4,5,7], [3,9,8],[2,3,4]]) b = torch.Tensor([[1,1,0], [0,0,1],[1,0,1]]).type(torch.ByteTensor) c = torch.masked_select(a,b) print(c) 用法:torch.masked_select(x, mask),mask必须转化成torch.ByteTensor类型。
torch.masked_select用于截取valid的标签太好用了: pred=torch.tensor([2,3,4,5]) mask=torch.ByteTensor([1,1,0,0]) torch.masked_select(pred,mask) # deprecated, 用bool值