Mask R-CNN是一个灵活开放的框架,可以在这个基础框架的基础上进行扩展,以完成更多的人工智能任务。在本案例中,我们将展示如何对基础的Mask R-CNN进行扩展,完成人体关键节点标注的任务。 Mask R-CNN整体架构,它的3个主要网络: backbone网络,用于生成特征图 RPN网络,用于生成实例的位置、分类、分割(mask)信息 head网...
num_classes=2model=torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=False,progress=True,num_classes=num_classes,pretrained_backbone=True)device=torch.device('cuda:0')model.to(device)dataset=PennFudanDataset("D:/pytorch/PennFudanPed")data_loader=torch.utils.data.DataLoader(dataset,batch_...
# maskrcnn中总共有五个损失函数,分别是rpn网络的两个损失,分类的两个损失,以及mask分支的损失函数。 # 前四个损失函数与fasterrcnn的损失函数一样,最后的mask损失函数的采用的是mask分支对于每个RoI有K*m^2维度的输出。 # k个(类别数)分辨率为m * m的二值mask。 # 因此作者利用了aper - pixelsigmoid,并...
DL训练框架采用Pytorch,推理框架使用Caffe,模型使用的是基于Facebook新出的MaskRCNN改进版,主要使用ADAS的视觉感知,包括OD,车道线,语义分割等网络。 整体框架: 图1 Mask R-CNN整体架构 Mask R-CNN是一个非常灵活的框架,可以增加新的分支完成不同任务,如:目标分类、目标检测、语义分割、实例分割、人体姿势识别...
2. Mask R-CNN可以完成的任务 图4 Mask R-CNN进行目标检测与实例分割 图5 Mask R-CNN进行人体姿态识别 总之,Mask R-CNN是一个非常灵活的框架,可以增加不同的分支完成不同的任务,可以完成目标分类、目标检测、语义分割、实例分割、人体姿势识别等多种任务,真不愧是一个好算法!
一、Mask R-CNN原理 Mask R-CNN模型在Faster R-CNN模型的基础上将ROI池化改成了ROI对齐(ROI align)...
当前SOTA!平台收录 R-FCN 共 47 个模型实现资源。 2、 Mask-RCNN Mask R-CNN是一个两阶段的框架,第一个阶段扫描图像并生成建议区域(proposals,即有可能包含一个目标的区域),第二阶段分类提议并生成边界框和掩码。Mask R-CNN是在Faster R-CNN的基础上添加了一个预测分割mask的分支,即在目标检测的基础上再进...
Mask R-CNN是R-CNN系列模型的集大成者,它在Faster R-CNN的基础上进行了改进,使得它不仅能更好地解决目标检测问题,还可以用来做实例分割。简单的来说,在理想情况下,像Mask R-CNN这种实例分割模型,它首先需要先找到一张图中哪些位置可能有物体存在,把它们从原图中找出来,称之为候选框,这里涉及到的部分是...
Mask RCNN 模型 一、Faster RCNN image.png Faster RCNN使用CNN提取图像特征,然后使用region proposal network(RPN)去提取出ROI [ROI(region of interest),感兴趣区域。],然后使用ROI pooling将这些ROI全部变成固定尺寸,再喂给全连接层进行Bounding box回归和分类预测。
Mask-RCNN网络模型 前面一篇已经详细分享了关于模型本身,格式化输入与输出的结果。这里使用的预训练模型是ResNet50作为backbone网络,实现模型的参数微调迁移学习。输入的数据是RGB三通道的,取值范围rescale到0~1之间。关于模型本身的解释请看这里: 轻松学Pytorch –Mask-RCNN图像实例分割 ...