基于Faster RCNN,做出如下改变: 添加了用于预测每个感兴趣区域(RoI)上的分割掩码分支,与用于分类和边界框回归的分支并行。mask分支是一个应用于每个RoI的FCN,以像素到像素的方式预测分割掩码,只增加了很小的计算开销,实现了实时分割 Faster R-CNN不是为网络输入和输出之间的像素到像素对齐而设计的。在RoIPool为特征提取执行粗空间
Mask RCNN精度高于Faster RCNN(为什么呢?分割和bbox检测不是单独分开互不影响吗?难道加上分割分支可以提高bbox检测效果?有空做做实验) Faster RCNN使用RoI Align的精度更高 Mask RCNN的分割任务得分与定位任务得分相近,说明Mask RCNN已经缩小了这部分差距。 4.4. Timing Inference:195ms一张图片,显卡Nvidia Tesla...
大部分结构与Faster R-CNN相同。 不同之处: 使用RoIAlign替代RoIPool。 添加预测mask的分支(与预测bbox平行)。 2.2. 论文配图如下 流程介绍: 原始图片(图中最左边的图片)通过基础网络(图中忽略)提取特征。 RPN(图中忽略)以基础网络特征图为输入,获取一系列RoI(图中 RoIAlign 层中的多个矩形框),即候选区域。
简单直观:整个Mask R-CNN算法的思路很简单,就是在原始Faster-rcnn算法的基础上面增加了FCN来产生对应的MASK分支。即Faster-rcnn + FCN,更细致的是 RPN + ROIAlign + Fast-rcnn + FCN。 易于使用:整个Mask R-CNN算法非常的灵活,可以用来完成多种任务,包括目标分类、目标检测、语义分割、实例分割、人体姿态识别...
论文指出,目标提议阶段是实时目标检测的计算瓶颈。作为一种解决方案,Faster R-CNN 实现了与特征提取器网络共享卷积层的区域提议网络 (RPN),从而引入了计算对象提议的边际成本。管道与 Fast R-CNN 一致,只是对象提议是通过内部训练的 RPN 进行的,如下图所示。
论文源址:https://arxiv.org/pdf/1703.06870.pdf 开源代码:https://github.com/matterport/Mask_RCNN 摘要 Mask R-CNN可以在进行检测的同时,进行高质量的分割操作。基于Faster R-CNN并进行扩展,增加了一个分支在进行框识别的同时并行的预测目标的mask。Mask R-CNN易于训练,相比Faster R-CNN增加了一点点花销。
论文原文:Mask R-CNN 1. RoI Align方法 1.1 RoI Pooling局限性分析 在常见的两级检测框架(比如Fast-RCNN,Faster-RCNN,RFCN)中,ROI Pooling 的作用是根据预选框的位置坐标在特征图中将相应区域池化为固定尺寸的特征图,以便进行后续的分类和包围框回归操作。由于预选框的位置通常是由模型回归得到的,一般来讲是浮点...
https://github.com/TuSimple/mx-maskrcnn 学习分割一切(Learning to Segment Everything) 文如其名,这篇论文是关于分割的。更具体的说,是关于实例分割的。计算机视觉中用于分割的标准数据集非常小,对现实世界的问题不足以有效。即...
具体来说,我们将介绍 R-CNN(区域 CNN),卷积神经网络在这个问题上的最初的应用,及变体 Fast R-CNN 和 Faster R-CNN。最后,我们将介绍 Facebook Research 最近发布的一篇文章 Mask R-CNN,它扩展了这种对象检测技术从而可以实现像素级分割。上述四篇论文的链接如下:1. R-CNN: https://arxiv.org/abs/...
Mask R-CNN 被引频次:1839 作者:Kaiming He,Georgia Gkioxari,Piotr Dollar,Ross Girshick.发布信息: 2017,16th IEEE International Conference on Computer Vision (ICCV)论文:https://arxiv.org/abs/1703.06870代码:https://github.com/facebookresearch/Detectron Mask R-CNN作为非常经典的实例分割(Instance...