Mask R-CNN的backbone网络,也称为骨干网,主要用于图像的特征提取。在Mask R-CNN之前,Faster R-CNN使用一个共享的卷积神经网络作为骨干网,Mask-RCNN的一个改进点在于,使用ResNet+FPN作为backbone网络,对于输入图片,生成多种尺寸的特征图,形成不同level的特征图金字塔,进一步强化了backbone网络的特征提取能力。
在RPN后面,增加了采用FCN结构的mask分割分支 网络结构如下图所示: 可以看出,Mask RCNN 是一种先检测物体,再分割的思路,简单直接,在建模上也更有利于网络的学习。 骨干网络 FPN 卷积网络的一个重要特征:深层网络容易响应语义特征,浅层网络容易响应图像特征。Mask RCNN的使用了ResNet和FPN结合的网络作为特征提取器。
mask-rcnn网络结构 可以看出,Mask RCNN 是一种先检测物体,再分割的思路,简单直接,在建模上也更有利于网络的学习。 骨干网络FPN 卷积网络的一个重要特征:深层网络容易响应语义特征,浅层网络容易响应图像特征。Mask RCNN的使用了ResNet和FPN结合的网络作为特征提取器。 FPN的代码出现在./mrcnn/model.py中,核心代码...
MaskRCNN 网络结构MaskRCNN作为FasterRCNN的扩展,产生RoI的RPN网络和FasterRCNN网络。 结构:ResNet101+FPN 代码:TensorFlow+ Keras(Python) 代码中将Resnet101网络,分成5个stage,记为[C1,C2,C3,C4,C5];这…
Mask_RCNN是何凯明基于以往的faster-rcnn构架提出的新的卷积网络,该方法再有效的目标的同时完成了高质量的语义分割。主要思路就是把原有的faster-rcnn进行扩展,添加一个分支使用现有的检测对目标进行并行预测,可以很方便的应用其他的应用领域,向目标检测,分割和人物关键点检测等。其网络结构如下。
原Faster R-CNN输出两类值:class label和bounding-box offset.Mask R-CNN加入一路object mask分支输出.object mask要求比前两个具有更精细的空间布局特征.mask分支作用于Fast R-CNN,而RPN保持不变. 多任务损失定义为: L = Lcls+ Lbox+ Lmask. Lcls+ Lbox保持不变,mask分支输出K个二值mask矩阵(每个像素经过...
Mask R-CNN是ICCV 2017的best paper,彰显了机器学习计算机视觉领域在2017年的最新成果。在机器学习2017年的最新发展中,单任务的网络结构已经逐渐不再引人瞩目,[取而代之](https://www.baidu.com/s?wd=%E5%8F%96%E8%80%8C%E4%BB%A3%E4%B9%8B&tn=24004469_oem_dg&rsv_dl=gh_pl_sl_csd)的是集成,...
Mask-RCNN 大体框架还是 Faster-RCNN 的框架,可以说在基础特征网络之后又加入了全连接的分割子网,由原来的两个任务(分类+回归)变为了三个任务(分类+回归+分割)。Mask R-CNN 是一个两阶段的框架,第一个阶段扫描图像并生成提议(proposals,即有可能包含一个目标的区域),第二阶段分类提议并生成边界框和掩码。
2.2 MaskRCNN Class 1 各部分代码之间关系梳理 目前已经在解析(一)完成 Resnet Graph、RPN、Proposal Layer 的代码解析,在解析(二)中完成 ROIAlign Layer、Detection Target Layer 的解析。接下来要解析Feature Pyramid Network Heads和MaskRCNN Class。这些模块之间的关系: ...
区域卷积神经网络(RCNN)系列模型为两阶段目标检测器。通过对图像生成候选区域,提取特征,判别特征类别并修正候选框位置。 RCNN系列目前包含两个代表模型:Faster RCNN,Mask RCNN Faster RCNN 整体网络可以分为4个主要内容: 基础卷积层。作为一种卷积神经网络目标检测方法,Faster RCNN首先使用一组基础的卷积网络提取图像...