Mask RCNN的网络结构如下图所示,我们先从宏观上认识一下Mask RCNN的整体结构。其主要分为两个部分,下图中黄框框住的部分为Faster RCNN结构,绿框框住的是一个FCN结构。也就是说,Mask RCNN是在Faster RCNN的基础上添加了一个FCN结构!!! 图1 Mask RCNN整体框架图 是的,Mask RCNN的结构就是这么...
在RPN后面,增加了采用FCN结构的mask分割分支。 网络结构如下图所示: mask-rcnn网络结构 可以看出,Mask RCNN 是一种先检测物体,再分割的思路,简单直接,在建模上也更有利于网络的学习。 骨干网络 FPN 卷积网络的一个重要特征:深层网络容易响应语义特征,浅层网络容易响应图像特征。Mask RCNN的使用了ResNet和FPN结合...
主要分为两个部分,下图中黄框框住的部分为Faster RCNN结构,绿框框住的是一个FCN结构。也就是说,Mask RCNN是在Faster RCNN的基础上添加了一个FCN结构, Mask RCNN的结构就是这么简单,却能起到非常好的效果。而且可扩展行非常好,比如我们还添加一个可以检测人体关键点信息的网络, 2. Mask RCNN细节 对于一张...
在RPN后面,增加了采用FCN结构的mask分割分支 网络结构如下图所示: 可以看出,Mask RCNN 是一种先检测物体,再分割的思路,简单直接,在建模上也更有利于网络的学习。 骨干网络 FPN 卷积网络的一个重要特征:深层网络容易响应语义特征,浅层网络容易响应图像特征。Mask RCNN的使用了ResNet和FPN结合的网络作为特征提取器。
网络结构如下图所示: 可以看出,Mask RCNN 是一种先检测物体,再分割的思路,简单直接,在建模上也更有利于网络的学习。 骨干网络 FPN 卷积网络的一个重要特征:深层网络容易响应语义特征,浅层网络容易响应图像特征。Mask RCNN的使用了ResNet和FPN结合的网络作为特征提取器。
上一节把握了一下Mask RCNN项目的整体逻辑,这一节主要从TensorFlow和Keras的交互以及Mask RCNN的网络结构入手来分析一下。 1. TensorFlow和Keras的交互说明 相信熟悉Keras的同学都经常看到这行代码: import keras.backend as K 如果Keras的后端是基于TensorFlow的,那么这个K就是Tensorflow了,那么自然会想一个问题,为什...
从最初的R-CNN到最新的Mask R-CNN,这些网络结构在准确性和效率方面不断取得突破。本文将逐一解析这些网络结构的关键特点和工作原理,并探讨它们的实际应用。 R-CNN:开启目标检测新时代 R-CNN(Regional Convolutional Neural Networks)是R-CNN系列中的开创性工作,它首次将深度学习应用于目标检测任务。R-CNN使用选择性...
FPN结构中包括自下而上,自上而下和横向连接三个部分,如下图所示。这种结构可以将各个层级的特征进行融合,使其同时具有强语义信息和强空间信息,在特征学习中算是一把利器了。 FPN实际上是一种通用架构,可以结合各种骨架网络使用,比如VGG,ResNet等。Mask RCNN文章中使用了ResNNet-FPN网络结构。如下图: ...
Mask RCNN的构建很简单,只是在ROI pooling(实际上用到的是ROIAlign,后面会讲到)之后添加卷积层,进行mask预测的任务。 Mask RCNN网络结构总结: 1、Backbone:ResNet-FPN,用于特征提取,另外,ResNet还可以是:ResNet-50,ResNet-101,ResNeXt-50,ResNeXt-101; ...
MaskRCNN网络结构 MaskRCNN作为FasterRCNN的扩展,产生RoI的RPN网络和FasterRCNN网络。 结构:ResNet101+FPN 代码:TensorFlow+ Keras(Python) 代码中将Resnet101网络,分成5个stage,记为[C1,C2,C3,C4,C5];这里的5个阶段分别对应着5中不同尺度的feature map输出,用来建立FPN网络的特征金字塔(feature pyramid). ...