可以看出我们图4中的结构采用的是图8的结构2,这种结构要求Mask RCNN的backbone使用FPN网络(特征金字塔网络),可以看出结构2中class、box分支和Mask分支不共用一个ROI层,这是为了保证mask分支拥有更多的细节信息。图8的结构1要求Maks RCNN的backbone采用resnet结构,也即不使用FPN结构。其实我倒是认为这两种结构差的不...
因此maskrcnn采用了FPN(特征金字塔网络)的结构,来进行特征的融合。 我们首先介绍一下FPN的网络结构: FPN可以同时利用低层特征图的空间信息和高层特征图的语义信息,他的原理很简单,就是把分辨率较小的高层特征首先通过1×1卷积降维(减少计算量),然后上采样至前一个特征图的相同尺寸,再进行逐元素相加,就能得到融合后...
最后,整个Mask RCNN网络结构包含两部分,一部分是backbone用来提取特征(上文提到的采用ResNet-50或者ResNet-101作为特征提取器提取特征),另一部分是head用来对每一个ROI进行分类、框回归和mask预测。为了产生对应的Mask,文中提出了两种架构,即左边的Faster R-CNN/ResNet和右边的Faster R-CNN/FPN,如图11所示。...
Mask RCNN沿用了Faster RCNN()的思想,特征提取采用ResNet-FPN的架构,另外多加了一个Mask(用于生成物体的掩模)预测分割分支。 如下图1所示。其中黑色部分为原来的Faster-RCNN,红色部分为在Faster-RCNN网络上的修改。将RoI Pooling 层替换成了RoIAlign层;添加了并列的FCN层(mask层)。 图1 Mask RCNN基本结构 Ma...
完整R-CNN结构 不使用暴力方法,而是用候选区域方法(region proposal method),创建目标检测的区域改变了图像领域实现物体检测的模型思路,R-CNN是以深度神经网络为基础的物体检测的模型 ,R-CNN在当时以优异的性能令世人瞩目,以R-CNN为基点,后续的SPPNet、Fast R-CNN、Faster R-CNN模型都是照着这个物体检测思路。
Mask-RCNN模型的基本结构 也许您还记得我们之前介绍过的Mask R-CNN整体架构,它的3个主要网络: backbone网络,用于生成特征图 RPN网络,用于生成实例的位置、分类、分割(mask)信息 head网络,对位置、分类和分割(mask)信息进行训练 在head网络中,有分类、位置框和分割(mask)信息的3个分支,我们可以对head网络进行扩展,...
Mask R-CNN个人理解 二,代码整体解析: 解析的该代码粗略估计有5000-6000行,相对于python来说代码量还是很庞大的。好在该代码封装的很好,没有冗余的结构,整体逻辑非常清晰,只要有耐心,还是能看懂的。 下面这张图是MaskRCNN算法结构图: 下面这张图是我根据代码画出来的(class MaskRCNN())代码逻辑结构图,有些地...
Mask-RCNN 大体框架还是 Faster-RCNN 的框架,可以说在基础特征网络之后又加入了全连接的分割子网,由原来的两个任务(分类+回归)变为了三个任务(分类+回归+分割)。Mask R-CNN 是一个两阶段的框架,第一个阶段扫描图像并生成提议(proposals,即有可能包含一个目标的区域),第二阶段分类提议并生成边界框和掩码。
源码:https://github.com/matterport/Mask_RCNN 结构:ResNet101+FPN 代码:TensorFlow+ Keras(Python) 代码中将Resnet101网络,分成5个stage,记为[C1,C2,C3,C4,C5];如果了解FPN网络(也可以参看上面提供的FPN网络博文链接),知道这里的5个阶段分别对应着5中不同尺度的feature map输出,用来建立FPN网络的特征金字塔(...
整体结构 Mask R-CNN添加一个分支来预测每个关注区域(RoI)上的分割蒙版,从而扩展了Faster R-CNN,与现有的用于分类和边界框回归的分支并行,整体结构如下图所示: RoIAlign替代RoIPool Mask R-CNN和Fast R-CNN一样,均属于两阶段的目标检测,第一阶段是从原图中提取感兴趣区域(Rol)。