Mask R-CNN是一个非常灵活的框架,可以增加新的分支完成不同任务,如:目标分类、目标检测、语义分割、实例分割、人体姿势识别等多种任务。框架延续Faster-RCNN,在基础特征网络后加入了全连接的分割子网,由原来两个任务变为三个任务,采用和Faster-RCNN相同的两个阶段。 第一阶段有相同的层(RPN),扫描图像生成提议框(...
使用ResNeXt-101-FPN,Mask R-CNN进一步提高了结果,比使用Inception-ResNet-v2-TDM模型高出3.0点AP。 作为进一步的比较,训练了一个没有Mask分支的Mask R-CNN,在上图中用“Faster R-CNN,RoIAlign”表示。由于RoIAlign的存在,该模型比行二算法具有更好的性能。另一方面,比Mask RCNN低0.9分box AP。因此可知Mask ...
Figure3展示了两种典型的Mask R-CNN网络结构,左边的是采用 R e s N e t ResNet ResNet或者 R e s N e X t ResNeXt ResNeXt做网络的backbone提取特征,右边的网络采用FPN网络做Backbone提取特征,最终作者发现使用ResNet-FPN作为特征提取的backbone具有更高的精度和更快的运行速度,所以实际工作时大多采用右图的完...
Mask R-CNN添加一个分支来预测每个关注区域(RoI)上的分割蒙版,从而扩展了Faster R-CNN,与现有的用于分类和边界框回归的分支并行,整体结构如下图所示: RoIAlign替代RoIPool Mask R-CNN和Fast R-CNN一样,均属于两阶段的目标检测,第一阶段是从原图中提取感兴趣区域(Rol)。 在Fast RCNN中,采用了RoIPool,能够通过...
我们在介绍过程中,将分两类进行分析。两阶段模型(two-stage detection)因其对图片的两阶段处理得名,也称为基于区域(Region-based)的方法,R-CNN系列工作就是这一类型的代表。单阶段模型(one-stage detection)没有中间的区域检出过程,直接从图片获得预测结果,也被称为Region-free方法。
在构建Mask R-CNN模型之前,我们首先来了解一下它的工作机制。 事实上,Mask R-CNN是Faster R-CNN和FCN的结合,前者负责物体检测(分类标签+窗口),后者负责确定目标轮廓。如下图所示: 它的概念很简单:对于每个目标对象,Faster R-CNN都有两个输出,一是分类标签,二是候选窗口;为了分割目标像素,我们可以在前两个输出...
Mask R-CNN 网络结构 Mask RCNN继承自Faster RCNN主要有三个改进: feature map的提取采用了FPN的多尺度特征网络 ROI Pooling改进为ROI Align 在RPN后面,增加了采用FCN结构的mask分割分支 网络结构如下图所示: 可以看出,Mask RCNN 是一种先检测物体,再分割的思路,简单直接,在建模上也更有利于网络的学习。
Mask RCNN 模型 一、Faster RCNN image.png Faster RCNN使用CNN提取图像特征,然后使用region proposal network(RPN)去提取出ROI [ROI(region of interest),感兴趣区域。],然后使用ROI pooling将这些ROI全部变成固定尺寸,再喂给全连接层进行Bounding box回归和分类预测。
MASK-RCNN(Mask Region-based Convolutional Neural Network)是一种基于区域的深度学习目标检测算法,它扩展了常见的Faster R-CNN模型。MASK-RCNN旨在解决目标检测中的两个关键问题:物体检测和语义分割。其主要原理包括以下几个步骤: 区域建议(Region Proposal):使用RPN(Region Proposal Network)生成候选目标框,以提取可能...