正常的 判别器loss loss在2.6到3.4之间来回上下波动。注意,在tensorboard中,最好将Smoothing值调整为0,如果使用了Smoothing将比较难观察到loss的波动趋势,这里以Smoothing为0.999为例,还是展示判别器损失: 这个时候容易误判为判别器loss在稳步下降。不过实际上可以发现这个"下降"从3.25降到了3.05,所以本质上还是小范围波动。
之前在一次组会上,师弟诉苦说他用 UNet 处理一个病灶分割的任务,但效果极差,我看了他的数据后发现,那些病灶区域比起整张图而言非常的小,而 UNet 采用的损失函数通常是逐像素的分类损失,如此一来,网络只要能够分割出大部分背景,那么 loss 的值就可以下降很多,自然无法精细地分割出那些细小的病灶。反过来想,这其实...
Center loss 本身没有分类功能,需要配合 Softmax loss,不能单独使用。 中心 初始化是随机值,之后随着学习到的特征进行实时更新。 计算每一类的中心损失时,需要除以该类样本数计算均值,防止因样本失衡导致的不同类别梯度更新不同步。 参数 控制中心损失优化力度, 越大区分度越高,但在人脸识别中,经验值一般取0.003即可。
pixel的重建目标可以尽可能的利用好图像信息,避免监督信息的丢失,而iGPT和BEiT的resize重建目标和token重建目标都会有不同程度的监督信息的丢失,降低了encoder的上限。 还有一个小细节 重建loss只作用在mask token上,这会提升0.5个点,这个设计使得image token和mask token的解耦更加彻底,试想一下,如果image token也计...
2.ResNet101有两个基本的块,分别名为Conv Block和Identity Block,其中Conv Block输入和输出的维度是不一样的,所以不能连续串联,它的作用是改变网络的维度;Identity Block输入维度和输出维度相同,可以串联,用于加深网络的。 结构左边为卷积,右边为残差边(short cut),没有残差边维度是不会改变的,所以Conv Block是会...
Loss 设计:Loss 由分类损失、边界框回归损失和 mask 损失三部分组成。其中分类损失和边界框回归损失同 SSD,mask 损失为预测 mask 和 ground truth mask 的逐像素二进制交叉熵。 Mask 裁剪:为了改善小目标的分割效果,在推理时会首先根据检测框进行裁剪,再阈值化。而在训练时,会使用 ground truth 框来进行裁剪,并...
Loss=L_{faster_rcnn}+L_{mask}=L_{rpn}+L_{fast_rcnn}+L_{mask}\\ Faster RCNN的损失就不用我介绍了吧,不懂的去看一下写在前面提到的几篇文章,相信你读完后就明白了。这里重点说一下Mask损失,其就是一个交叉熵损失,关于交叉熵损失可以看看这篇FCN文章的附录部分。那么在Mask RCNN中是...
最终的优化目标由两个损失函数组成。第一个是传统的交叉熵损失,其中和是预测的类别分布和真实标签。当孤立的token数量超出正常限制时,孤立的图像token可能会导致准确性下降。因此引入了一个新的 drop-control loss 来防止过多的 patch drop: 其中λ 是调整预期激活token数的系数。通过λ调节掩码,避免在早期训练阶段隔...
不同的 TAMT 训练目标对于 BERT 子网络影响不大,而对于 RoBERTa,TAMT-KD+MLM > TAMT-MLM > TAMT-KD。这说明 MLM 和 KD 两种目标具有一定的一致性,或者至少不是冲突的。 3.3 预训练效果和下游任务效果的关系 ▲图5 预训练任务(MLM及KD)dev loss和下游任务平均性能的关系 ...
box分支和mask保持不变,输出的mask先经过阈值为0.5的binarize,再计算binary mask和gt的IoU作为target,采用L2 loss作为损失函数,loss weight设为1,3个分支同时end-to-end训练。 inference过程: 检测分支输出score最高的100个框,再送入mask分支,得到mask结果,RoI feature map再和mask送入MaskIoU分支得到mask iou,与bo...