2、隐Markov模型扩展:刚才讲的都是简单离散概率模型的隐Markov模型,实际情况能够推广到连续随机变量。典型的有正态分布、Gamma分布,或者某些混合分布等。 比方最常写在一起的GMM-HMM。即高斯混合模型-隐形马尔科夫模型。该模型即是卷积神经网络的基础。 3、GMM-HMM的语音识别应用,參考http://blog.csdn.net/abcjenni...
CA-Markov模型是一种结合了元胞自动机(CellularAutomaton,CA)与马尔可夫(Markov)链的地理空间动态模拟方法。该模型在地理空间分析、城市规划、土地利用变化等领域具有广泛应用。 一、CA-Markov模型原理 1.元胞自动机(CA)原理: 元胞自动机是一种离散模型,由格网、状态、邻居和转换规则四部分组成。在CA模型中,地理空...
Markov预测模型是一个典型的无后效性随机过程,也就是说模型在时刻t的状态只与它的前一个时刻t-1的状态条件相关,与以前的状态独立。即: 王实等提出一种新的基于隐马尔可夫模型的兴趣迁移模式发现方法,并利用用户迁移模式间的关联规则来发现兴趣迁移模式。而借助隐马尔可夫模型, 挖掘蕴涵在用户访问路径中的信息需求概...
1 Markov模型 1.1 Markov模型 Markov预测模型对用户在Web上的浏览过程作了如下的假设。 假设1(用户浏览过程假设):假设所有用户在Web上的浏览过程是一个特殊的随机过程——齐次的离散Markov模型。即设离散随机变量的值域为Web空间中的所有网页构成的集合,则一个用户在Web中的浏览过程就构成一个随机变量的取值序列,并且...
离散时间Markov决策过程模型可以在离散时间的智能体/环境接口的基础上进一步引入具有Markov性的概率模型得到。首先我们来回顾上一章提到的离散时间智能体/环境接口。在离散时间智能体/环境接口中,智能体和环境交互的时刻为{0,1,2,3,…}。在时刻t,依次发生以下事情。
Markov预测模型是一个典型的无后效性随机过程,也就是说模型在时刻t的状态只与它的前一个时刻t-1的状态条件相关,与以前的状态独立。即: 王实等提出一种新的基于隐马尔可夫模型的兴趣迁移模式发现方法,并利用用户迁移模式间的关联规则来发现兴趣迁移模式。而借助隐马尔可夫模型, 挖掘蕴涵在用户访问路径中的信息需求概...