Reduce会接收到不同map任务传来的数据,并且每个map传来的数据都是有序的。如果reduce端接受的数据量相当小,则直接存储在内存 中(缓冲区大小由mapred.job.shuffle.input.buffer.percent属性控制,表示用作此用途的堆空间的百分比),如果数 据量超过了该缓冲区大小的一定比例(由mapred.job.shuffle.merge.percent决定),...
在实际情况中,Map 任务和Reduce任务需要的计算资源不尽相同, Hadoop 又将槽分成Map 槽和Reduce 槽, 并且Map 任务只能使用Map槽, Reduce 任务只能使用Reduce槽。 Hadoop 的资源管理采用了静态资源设置方案,即每个节点配置好Map 槽和Reduce 槽的数量(配置项为mapred-site.xml 的mapred.task:tracker.map.tasks.maximu...
MapReduce框架的核心步骤主要分两部分:Map和Reduce。当你向MapReduce框架提交一个计算作业时,它会首先把计算作业拆分成若干个Map任务,然后分配到不同的节点上去执行,每一个Map任务处理输入数据中的一部分,当Map任务完成后,它会生成一些中间文件,这些中间文件将会作为Reduce任务的输入数据。Reduce任务的主要目标就是把前面...
MapReduce框架的核心步骤主要分两部分:Map和Reduce。当你向MapReduce框架提交一个计算作业时,它会首先把计算作业拆分成若干个Map任务,然后分配到不同的节点上去执行,每一个Map任务处理输入数据中的一部分,当Map任务完成后,它会生成一些中间文件,这些中间文件将会作为Reduce任务的输入数据。Reduce任务的主要目标就是把前面...