class MixerModel(nn.Module): def __init__( self, d_model: int, n_layer: int, d_intermediate: int, vocab_size: int, ssm_cfg=None, attn_layer_idx=None, attn_cfg=None, norm_epsilon: float = 1e-5, rms_norm: bool =
import torch from transformers import AutoTokenizer from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel device = "cuda" tokenizer = AutoTokenizer.from_pretrained("havenhq/mamba-chat") tokenizer.eos_token = "<|endoftext|>" tokenizer.pad_token = tokenizer.eos_token tokenizer.chat_templa...
import torch from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel from transformers import AutoTokenizer, TrainingArguments # Load model model = MambaLMHeadModel.from_pretrained( "state-spaces/mamba-1.4b", device="cuda", dtype=torch.bfloat16) # Load Tokenizer tokenizer = AutoTokenizer....
Search or jump to... Search code, repositories, users, issues, pull requests... Provide feedback We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your...
if ssm_layer not in ["Mamba1", "Mamba2"]: raise ValueError(f"Invalid ssm_layer: {ssm_layer}, only support Mamba1 and Mamba2") mixer_cls = partial( Mamba2 if ssm_layer == "Mamba2" else Mamba, layer_idx=layer_idx, **ssm_cfg, **factory_kwargs ) else: mixer_cls...
!pip installmamba-ssm==1.0.1 然后直接使用transformers库读取预训练的Mamba-3B importtorchimportos from transformersimportAutoTokenizer from mamba_ssm.models.mixer_seq_simpleimportMambaLMHeadModel tokenizer =AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") ...
!pip install mamba-ssm==1.0.1 1. 2. 然后直接使用transformers库读取预训练的Mamba-3B import torch import os from transformers import AutoTokenizer from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") ...
import time import json import torch import torch.nn.functional as F from einops import rearrange from transformers import AutoTokenizer, AutoModelForCausalLM from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel model_name = "state-spaces/mamba-2.8b" prompt = "I have a dream and I"...
来源:models/mixer_seq_simple.py。 这是如何将 Mamba 集成到端到端神经网络中的示例。该示例在下面的生成脚本中使用。 预训练模型 预训练模型上传到 Hugging Face:mamba-130m、mamba-370m、 mamba-790m、mamba-1.4b、mamba-2.8b,在 Pile 上使用 300B 令牌进行训练,以及mamba-2.8b-slimpj (在 SlimPajama 数...
We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up Reseting focus {...