代码:https://github.com/XiaoBuL/CM-UNet 年份:2024 创新点 提出了一种新的混合架构CM-UNet,该架构结合了CNN和Mamba模型,用于遥感图像的语义分割,通过CNN编码器提取局部特征,利用Mamba解码器整合全局信息。 CSMamba模块:设计了一个核心的CSMamba模块,使用通道和空间注意力作为激活条件来增强特征交互和全局-局部信息...
UNet结合Mamba,刷爆SOTA! | 在图像分割领域,UNet及其变体一直是研究的热点,但随着技术的发展,传统UNet面临的挑战也日益凸显,尤其是在样本稀缺和数据分布不均等问题上。为了解决这些难题,研究者们开始探索将迁移学习与UNet结合的新方法。最近,Mamba模型的出现为UNet带来了新的活力。#WeNet#UIWIX(计算机病毒)#AI服务器...
这种结合可以让Mamba在处理长序列数据时既能够捕捉到序列中的时间依赖关系,又能够利用CNN的局部特征提取能力来加速处理过程,实现计算效率与模型性能的双赢,因此被广泛应用于各大领域。比如Weak-Mamba-UNet等网络架构通过结合两者优势,有效地解决了医学图像中复杂的结构和模式识别问题,准确率高达99.63%。另外还有HC-Mamba、...
论文:http:///abs/2405.10530 代码:https://github.com/XiaoBuL/CM-UNet 年份:2024 创新点 提出了一种新的混合架构CM-UNet,该架构结合了CNN和Mamba模型,用于遥感图像的语义分割,通过CNN编码器提取局部特征,利用Mamba解码器整合全局信息。 CSMamba模块:设计了一个核心的CSMamba模块,使用通道和空间注意力作为激活条件...