这些数据集都可以在官网上查到,以鸢尾花为例,可以在官网上找到demo,http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html
sklearn.datasets.make_blobs( n_samples=100,# 样本数量n_features=2,# 特征数量centers=None,# 中心个数 intcluster_std=1.0,# 聚簇的标准差center_box(-10.0,10.0),# 聚簇中心的边界框shuffle=True,# 是否洗牌样本random_state=None#随机种子) 2.实操 importmatplotlib.pyplotaspltfromsklearn.datasetsimport...
sklearn.datasets.make_blobs(n_samples=100,n_features=2,centers=3, cluster_std=1.0,center_box=(-10.0,10.0),shuffle=True,random_state=None) make_blobs 函数是为聚类或分类产生数据集,产生一个数据集和相应的标签 n_samples: 表示数据样本点个数,默认值100 n_features: 是每个样本的特征(或属性)数,...
sklearn 中的 make_blobs()函数make_blobs() 是 sklearn.datasets中的一个函数 主要是产生聚类数据集,需要熟悉每个参数,继而更好的利用 官方链接: https://scikit-learn.org/dev/modules/generated/sklearn.dat…
sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None) 参数含义: n_samples: int, optional (default=100) The total number of points equally divided among clusters. ...
from sklearn.datasets import make_blobs # 生成数据 X, y = make_blobs(n_samples=300, centers=4, n_features=2, random_state=42) # 打印返回值 print("样本数据 X 的形状:", X.shape) print("样本标签 y:", y) 在这个例子中,make_blobs 生成了 300 个二维样本,分布在 4 个不同的簇中。
make_blobs()是 sklearn.datasets中的一个函数。 主要是产生聚类数据集,产生一个数据集和相应的标签。 函数的源代码如下: defmake_blobs(n_samples =100, n_features =2, centers =3, cluster_std =1.0, center_box = (-10.0,10.0), shuffle =True, random_state =None):"""Generate isotropic Gaussian...
sklearn中make_blobs的⽤法详情 ⽬录 1.调⽤make_blobs 2.make_blobs的⽤法 sklearn中的make_blobs函数主要是为了⽣成数据集的,具体如下:1.调⽤make_blobs from sklearn.datasets import make_blobs 2.make_blobs的⽤法 data, label = make_blobs(n_features=2, n_samples=100, centers=3,...
sklearn.datasets.make_blobs(n_samples=100, n_features=2, *, centers=None, cluster_std=1.0, center_box=(-10.0,10.0), shuffle=True, random_state=None, return_centers=False) 生成用於聚類的各向同性高斯斑點。 在用戶指南中閱讀更多信息。
sklearn 中 make_blobs模块 # 生成用于聚类的各向同性高斯blob sklearn.datasets.make_blobs(n_samples = 100,n_features = 2,center = 3,cluster_std = 1.0,center_box =( - 10.0,10.0),shuffle = True,random_state = None) 参数 n_samples: int, optional (default=100)...